Abstract

We demonstrate a technique for instantaneous measurements of surface topography based on the combination of a partitioned aperture wavefront imager with a lamp-based reflection microscope using standard objectives. The technique can operate at video rate over large fields of view, and provides nanometer axial resolution and submicrometer lateral resolution. We discuss performance characteristics of this technique, which we experimentally compare with scanning white light interferometry.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Flournoy, R. W. McClure, and G. Wyntjes, Appl. Opt. 11, 1907 (1972).
    [CrossRef]
  2. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
    [CrossRef]
  3. G. S. Kino and S. C. Chim, Appl. Opt. 29, 3775 (1990).
    [CrossRef]
  4. J. C. Wyant and K. Creath, Int. J. Mach. Tools Manuf. 32, 5 (1992).
    [CrossRef]
  5. J. C. Wyant, Appl. Opt. 52, 1 (2013).
    [CrossRef]
  6. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, Opt. Lett. 37, 4062 (2012).
    [CrossRef]
  7. I. Iglesias, Opt. Lett. 36, 3636 (2011).
    [CrossRef]
  8. A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, Proc. SPIE 3353, 941 (1998).
    [CrossRef]
  9. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
    [CrossRef]
  10. P. Bon, S. Monneret, and B. Wattellier, Appl. Opt. 51, 5698 (2012).
    [CrossRef]

2013

2012

2011

2004

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

1998

A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, Proc. SPIE 3353, 941 (1998).
[CrossRef]

1992

J. C. Wyant and K. Creath, Int. J. Mach. Tools Manuf. 32, 5 (1992).
[CrossRef]

1990

1987

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

1972

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Bindi, N.

A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, Proc. SPIE 3353, 941 (1998).
[CrossRef]

Bon, P.

Chim, S. C.

Chu, K. K.

Cogswell, C. J.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Creath, K.

J. C. Wyant and K. Creath, Int. J. Mach. Tools Manuf. 32, 5 (1992).
[CrossRef]

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Esposito, S.

A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, Proc. SPIE 3353, 941 (1998).
[CrossRef]

Flournoy, P. A.

Ford, T. N.

Iglesias, I.

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Kino, G. S.

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

McClure, R. W.

Mertz, J.

Monneret, S.

Parthasarathy, A. B.

Ragazzoni, R.

A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, Proc. SPIE 3353, 941 (1998).
[CrossRef]

Riccardi, A.

A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, Proc. SPIE 3353, 941 (1998).
[CrossRef]

Sheppard, C. J. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Stefanini, P.

A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, Proc. SPIE 3353, 941 (1998).
[CrossRef]

Wattellier, B.

Wyant, J. C.

J. C. Wyant, Appl. Opt. 52, 1 (2013).
[CrossRef]

J. C. Wyant and K. Creath, Int. J. Mach. Tools Manuf. 32, 5 (1992).
[CrossRef]

Wyntjes, G.

Appl. Opt.

Int. J. Mach. Tools Manuf.

J. C. Wyant and K. Creath, Int. J. Mach. Tools Manuf. 32, 5 (1992).
[CrossRef]

J. Microsc.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Opt. Lett.

Proc. SPIE

A. Riccardi, N. Bindi, R. Ragazzoni, S. Esposito, and P. Stefanini, Proc. SPIE 3353, 941 (1998).
[CrossRef]

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Proc. SPIE 775, 233 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup: fobj, fTL, fe, and fpaw denote a microscope objective and lenses. A linear polarizer (LP), quarter-wave plate (QWP), and polarizing beam splitter (PBS) minimize spurious back-reflections. The 3f PAW module includes a composite lens (inset) that projects four oblique-detection images onto a camera.

Fig. 2.
Fig. 2.

Step profile discontinuity in sample (red), and simulated profile reconstruction when system resolution is diffraction-limited (blue) or pixel-limited with ×2 under sampling (green). Open circles and crosses indicate representative pixel array positions relative to the step discontinuity.

Fig. 3.
Fig. 3.

Images of DM obtained after correcting for system aberrations according to Eq. (4): (a)–(d) quadrant images I14 (a.u.) recorded by camera, with dc level subtracted for ease of presentation; (e) and (f) calculated light tilts θx and θy (a.u.); (g) normalized widefield image Itot (note apparent supporting structure and etch-access holes); (h) profile of the DM with color-encoded height (μm).

Fig. 4.
Fig. 4.

Profiles of DM reconstructed by (a) PAW and (b) SWLI, and (c), (d) representative line profiles for comparison.

Fig. 5.
Fig. 5.

Profile of entire DM surface (color-encoded in micrometers) imaged at low magnification and reconstructed by PAW.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θx=NAi(I1I2I3+I4)/Itot,θy=NAi(I1+I2I3I4)/Itot,
θx=2xh,θy=2yh,
h(ρ)h0=14πid2κei2πκ·ρθ˜(κ)κx+iκy,
Ik=Iksample/Ikref,k=14.
σθ2=σθx2+σθy2=2NAi2[4σr2+Itot]/Itot2,
σh2p2σθ28πln(N/2),

Metrics