Abstract

We study the generation of parabolic self-similar optical pulses in tapered Si photonic nanowires (Si-PhNWs) at both telecom (λ=1.55μm) and mid-infrared (λ=2.2μm) wavelengths. Our computational study is based on a rigorous theoretical model, which fully describes the influence of linear and nonlinear optical effects on pulse propagation in Si-PhNWs with arbitrarily varying width. Numerical simulations demonstrate that, in the normal dispersion regime, optical pulses evolve naturally into parabolic pulses upon propagation in millimeter-long tapered Si-PhNWs, with the efficiency of this pulse-reshaping process being strongly dependent on the spectral and pulse parameter regime in which the device operates, as well as the particular shape of the Si-PhNWs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, J. Opt. Soc. Am. B 10, 1185 (1993).
    [CrossRef]
  2. K. Tamura and M. Nakazawa, Opt. Lett. 21, 68 (1996).
    [CrossRef]
  3. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef]
  4. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
    [CrossRef]
  5. T. Hirooka and M. Nakazawa, Opt. Lett. 29, 498 (2004).
    [CrossRef]
  6. B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
    [CrossRef]
  7. A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, Opt. Lett. 32, 331 (2007).
    [CrossRef]
  8. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, Opt. Express 15, 852 (2007).
    [CrossRef]
  9. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zollner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tunnermann, Opt. Express 10, 628 (2002).
    [CrossRef]
  10. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, Opt. Lett. 29, 2073 (2004).
    [CrossRef]
  11. S. Lefrancois, C. H. Liu, M. L. Stock, T. S. Sosnowski, A. Galvanauskas, and F. W. Wise, Opt. Lett. 38, 43 (2013).
    [CrossRef]
  12. N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, Opt. Express 18, 7596 (2010).
    [CrossRef]
  13. A. Peacock and N. Healy, Opt. Lett. 35, 1780 (2010).
    [CrossRef]
  14. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
    [CrossRef]
  15. R. Soref, Nat. Photonics 4, 495 (2010).
    [CrossRef]
  16. N. C. Panoiu, X. Chen, and R. M. Osgood, Opt. Lett. 31, 3609 (2006).
    [CrossRef]
  17. B. Kuyken, X. P. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, Opt. Express 19, 20172 (2011).
    [CrossRef]
  18. N. C. Panoiu, X. Liu, and R. M. Osgood, Opt. Lett. 34, 947 (2009).
    [CrossRef]
  19. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
    [CrossRef]
  20. L. Yin, Q. Lin, and G. P. Agrawal, Opt. Lett. 32, 391 (2007).
    [CrossRef]
  21. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, Opt. Express 15, 15242 (2007).
    [CrossRef]
  22. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlassov, Adv. Opt. Photon. 1, 162 (2009).
    [CrossRef]
  23. X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Sel. Top. Quantum Electron. 42, 160 (2006).
    [CrossRef]
  24. N. C. Panoiu, J. F. McMillan, and C. W. Wong, IEEE J. Sel. Top. Quantum Electron. 16, 257 (2010).
    [CrossRef]
  25. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, and R. M. Osgood, Opt. Express 20, 9227 (2012).
    [CrossRef]
  26. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Opt. Express 14, 4357 (2006).
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

2010 (4)

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, Opt. Express 18, 7596 (2010).
[CrossRef]

A. Peacock and N. Healy, Opt. Lett. 35, 1780 (2010).
[CrossRef]

R. Soref, Nat. Photonics 4, 495 (2010).
[CrossRef]

N. C. Panoiu, J. F. McMillan, and C. W. Wong, IEEE J. Sel. Top. Quantum Electron. 16, 257 (2010).
[CrossRef]

2009 (2)

2007 (4)

2006 (4)

X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Sel. Top. Quantum Electron. 42, 160 (2006).
[CrossRef]

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
[CrossRef]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Opt. Express 14, 4357 (2006).
[CrossRef]

N. C. Panoiu, X. Chen, and R. M. Osgood, Opt. Lett. 31, 3609 (2006).
[CrossRef]

2004 (3)

2002 (2)

2000 (2)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

1996 (1)

1993 (1)

Agarwal, A.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Agrawal, G. P.

Anderson, D.

Badding, J. V.

Baets, R.

Bergman, K.

Billet, C.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
[CrossRef]

Boyraz, O.

Chen, X.

Chou, C. Y.

Clausnitzer, T.

Dadap, J. I.

Desaix, M.

Driscoll, J. B.

Dudley, J. M.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
[CrossRef]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Dulkeith, E.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Ferriere, R.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
[CrossRef]

Finot, C.

Foresi, J.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Foster, M. A.

Fuchs, H. J.

Furusawa, K.

Gaeta, A. L.

Galvanauskas, A.

Green, W. M.

Green, W. M. J.

Grote, R. R.

Harvey, J. D.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Healy, N.

Hirooka, T.

Hsieh, I.-W.

Jalali, B.

Jeong, Y.

Karlsson, M.

Kibler, B.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
[CrossRef]

Kimerling, L. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Kley, E. B.

Koonath, P.

Kruglov, V. I.

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, J. Opt. Soc. Am. B 19, 461 (2002).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Kuyken, B.

Lacourt, P. A.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
[CrossRef]

Larger, L.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
[CrossRef]

Latkin, A. I.

Lee, K. K.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Lefrancois, S.

Lim, D. R.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Limpert, J.

Lin, Q.

Lipson, M.

Lisak, M.

Liu, C. H.

Liu, X.

Liu, X. P.

Luan, H. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Malinowski, A.

Manolatou, C.

McMillan, J. F.

N. C. Panoiu, J. F. McMillan, and C. W. Wong, IEEE J. Sel. Top. Quantum Electron. 16, 257 (2010).
[CrossRef]

Nakazawa, M.

Nilsson, J.

Ophir, N.

Osgood, R. M.

Panoiu, N. C.

Peacock, A.

Peacock, A. C.

Petropoulos, P.

Piper, A.

Price, J. H. V.

Provost, L.

Quiroga-Teixeiro, M. L.

Raghunathan, V.

Richardson, D. J.

Roelkens, G.

Sazio, P. J. A.

Schmidt, B. S.

Schreiber, T.

Sharping, J. E.

Soref, R.

R. Soref, Nat. Photonics 4, 495 (2010).
[CrossRef]

Sosnowski, T. S.

Sparks, J. R.

Stock, M. L.

Sysoliatin, A. A.

Tamura, K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Tunnermann, A.

Turitsyn, S. K.

Turner, A. C.

Vlasov, Y. A.

Vlassov, Y. A.

Wise, F. W.

Wong, C. W.

N. C. Panoiu, J. F. McMillan, and C. W. Wong, IEEE J. Sel. Top. Quantum Electron. 16, 257 (2010).
[CrossRef]

Xia, F.

Yin, L.

Zellmer, H.

Zollner, K.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
[CrossRef]

Electron. Lett. (1)

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, Electron. Lett. 42, 965 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Sel. Top. Quantum Electron. 42, 160 (2006).
[CrossRef]

N. C. Panoiu, J. F. McMillan, and C. W. Wong, IEEE J. Sel. Top. Quantum Electron. 16, 257 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

R. Soref, Nat. Photonics 4, 495 (2010).
[CrossRef]

Opt. Express (8)

Opt. Lett. (9)

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Dispersion maps of (a) GVD coefficient, β2; (b) third-order dispersion coefficient, β3; (c) self-phase modulation coefficient, γ; (d) TPA coefficient, γ; (e) the real and (f) the imaginary part of the shock time, τ. In (a), β2=0 on the black contour and the arrows indicate the limits of w, at λ=1.55 and 2.2 μm.

Fig. 2.
Fig. 2.

Temporal pulse shape with increasing z and the chirp of the output pulse, calculated for the full model (solid line) and for β3=0 and τ=0 (dotted line) (top panels), and the corresponding pulse spectra (bottom panels). The insets show εI2 versus z, for the full model (solid line) and for β3=0 and τ=0 (dotted line). The panels to the left (right) correspond to λ=2.2μm (λ=1.55μm).

Fig. 3.
Fig. 3.

Dependence of εI2 on pulse width and power.

Fig. 4.
Fig. 4.

Dependence of εI2 on z and pulse power, calculated for a Gaussian pulse (top panels), a super-Gaussian pulse with m=2 (middle panels), and a sech pulse (bottom panels). In all cases, TFWHM=220fs. The left (right) panels correspond to λ=2.2μm (λ=1.55μm).

Fig. 5.
Fig. 5.

(a) Schematics and dependence of w(z) for linear and exponential tapers, w(z)=win+[(woutwin)(1eaz)/(1eaL)]. In all cases, win=1500nm and wout=820nm. Panels (b) and (c) show εI2 versus z for the tapers in (a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

iuz+n=13inβn(z)n!nutn=icκ(z)2nvg(z)αFC(z)uωκ(z)nvg(z)δnFC(z)uγ(z)[1+iτ(z)t]|u|2u,
Nt=Ntc+3Γ(z)4ϵ0A2(z)vg2(z)|u|4,
εI2=[|u(t)|2|up(t)|2]2dt|u(t)|4dt.

Metrics