Abstract

High-speed, tunable integrated silicon photonic delay lines are demonstrated by cascading complementary apodized silicon grating waveguides. The cascaded grating waveguides, with inward and outward super-Gaussian apodization profiles, compensate each other’s dispersion and allow high-speed operation. Characterization of the compact delay lines shows that they have low loss, offer true time delays of 82 ps and a tuning range of 32 ps, and can potentially operate at bit rates as high as 107Gb/s.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
    [CrossRef]
  2. S. Khan, M. A. Baghban, and S. Fathpour, Opt. Express 19, 11780 (2011).
    [CrossRef]
  3. S. Khan and S. Fathpour, Opt. Express 20, 19859 (2012).
    [CrossRef]
  4. S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, IEEE Photon. Technol. Lett. 9, 634 (1997).
    [CrossRef]
  5. F. Xia, L. Sekaric, and Yu. Vlasov, Nat. Photonics 1, 65 (2007).
    [CrossRef]
  6. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
    [CrossRef]
  7. J. B. Khurgin and P. A. Morton, Opt. Lett. 34, 2655 (2009).
    [CrossRef]
  8. P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, IEEE Photon. Technol. Lett. 24, 512 (2012).
    [CrossRef]
  9. Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
    [CrossRef]
  10. Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
    [CrossRef]
  11. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 16, 192 (2010).
    [CrossRef]
  12. J. B. Khurgin, J. U. Kang, and Y. J. Ding, Opt. Lett. 25, 70 (2000).
    [CrossRef]
  13. Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
    [CrossRef]

2012 (3)

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, IEEE Photon. Technol. Lett. 24, 512 (2012).
[CrossRef]

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
[CrossRef]

S. Khan and S. Fathpour, Opt. Express 20, 19859 (2012).
[CrossRef]

2011 (1)

2010 (2)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 16, 192 (2010).
[CrossRef]

2009 (1)

2007 (1)

F. Xia, L. Sekaric, and Yu. Vlasov, Nat. Photonics 1, 65 (2007).
[CrossRef]

2005 (2)

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
[CrossRef]

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef]

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

2000 (1)

1997 (1)

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, IEEE Photon. Technol. Lett. 9, 634 (1997).
[CrossRef]

Adachi, J.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 16, 192 (2010).
[CrossRef]

Adibi, A.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
[CrossRef]

Alipour, P.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
[CrossRef]

Atabaki, A. H.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
[CrossRef]

Baba, T.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 16, 192 (2010).
[CrossRef]

Baghban, M. A.

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Cardenas, J.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, IEEE Photon. Technol. Lett. 24, 512 (2012).
[CrossRef]

Chen, R. T.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
[CrossRef]

Chen, X.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
[CrossRef]

Coppinger, F.

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, IEEE Photon. Technol. Lett. 9, 634 (1997).
[CrossRef]

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Ding, Y. J.

Eftekhar, A. A.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
[CrossRef]

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Fathpour, S.

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Gu, L.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
[CrossRef]

Hamann, H. F.

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef]

Howley, B.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
[CrossRef]

Ishikura, N.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 16, 192 (2010).
[CrossRef]

Jalali, B.

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, IEEE Photon. Technol. Lett. 9, 634 (1997).
[CrossRef]

Jiang, W.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
[CrossRef]

Jiang, Y.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
[CrossRef]

Kang, J. U.

Khan, S.

Khurgin, J. B.

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Li, Q.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
[CrossRef]

Lipson, M.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, IEEE Photon. Technol. Lett. 24, 512 (2012).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

McNab, S. J.

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef]

Melloni, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Morichetti, F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Morton, P. A.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, IEEE Photon. Technol. Lett. 24, 512 (2012).
[CrossRef]

J. B. Khurgin and P. A. Morton, Opt. Lett. 34, 2655 (2009).
[CrossRef]

O’Boyle, M.

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef]

O’Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Sasaki, H.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 16, 192 (2010).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, and Yu. Vlasov, Nat. Photonics 1, 65 (2007).
[CrossRef]

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

Trinh, P. D.

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, IEEE Photon. Technol. Lett. 9, 634 (1997).
[CrossRef]

Vlasov, Yu.

F. Xia, L. Sekaric, and Yu. Vlasov, Nat. Photonics 1, 65 (2007).
[CrossRef]

Vlasov, Yu. A.

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Yu. Vlasov, Nat. Photonics 1, 65 (2007).
[CrossRef]

Yegnanarayanan, S.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
[CrossRef]

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, IEEE Photon. Technol. Lett. 9, 634 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, IEEE J. Sel. Top. Quantum Electron. 16, 192 (2010).
[CrossRef]

IEEE Photon. J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photon. J. 2, 181 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, IEEE Photon. Technol. Lett. 24, 512 (2012).
[CrossRef]

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, IEEE Photon. Technol. Lett. 24, 1276 (2012).
[CrossRef]

S. Yegnanarayanan, P. D. Trinh, F. Coppinger, and B. Jalali, IEEE Photon. Technol. Lett. 9, 634 (1997).
[CrossRef]

Nat. Photonics (1)

F. Xia, L. Sekaric, and Yu. Vlasov, Nat. Photonics 1, 65 (2007).
[CrossRef]

Nature (1)

Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, Proc. SPIE 5733, 166 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of a standard grating waveguide and its delay spectrum. (b) Schematic of cascaded complementary apodized gratings, using an outward-apodized grating (grating 1) and an inward-apodized grating (grating 2). The delay spectra of gratings 1 and 2 are shown in blue and green, respectively. The combined delay spectrum of the cascaded device is shown in red.

Fig. 2.
Fig. 2.

Transmission spectra of an MZI with gratings. The blue line (with large spikes) is the transmission spectrum when 0 W is applied to the microheater on top of the type 1 grating and 0.5 W is applied to the type 2 grating. The red spectrum is for the opposite electrical power conditions.

Fig. 3.
Fig. 3.

Delay spectrum extracted from the measured wavelength location of the minima and maxima of the grating waveguides in MZI configuration with grating 1 at 0 W and grating 2 at 0.5 W (triangles) and with 0.5 W for grating 1 and 0 W for grating 2 (circles). Solid lines show the simulation results for the corresponding conditions. ΔT=T2T1 is the temperature difference between the gratings.

Fig. 4.
Fig. 4.

Delay spectra for a 5-mm-long type 2 grating at different bias powers.

Fig. 5.
Fig. 5.

Bit rate and delay versus applied bias for a cascaded and a single device. For the cascaded device, the x axis is P2P1, where P1 is the electrical power applied to the type 1 grating and P2 is the corresponding value for the type 2 grating. For the single device, the x axis corresponds to the power applied to the type 2 grating.

Tables (1)

Tables Icon

Table 1. Comparison of the Characterized Cascaded and Single Devices

Metrics