Abstract

In this Letter, we experimentally investigate multiwavelength parametric generation in two-dimensional second-order nonlinear photonic crystals. For this purpose, a 2D periodically poled lithium tantalate crystal with rectangular lattice was fabricated and characterized. We demonstrate multiple and simultaneous wavelength generation due to the contribution of different lattice vectors. Numerical simulations emphasize the agreement of our phase matching scheme with the experimental results and made it possible to assign the observed wavelengths to the reciprocal lattice vectors involved in the parametric generation process. Moreover, our results indicate that some signals are the result of the joint contribution of more than one lattice vector.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
    [CrossRef]
  2. N. G. R. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
    [CrossRef]
  3. A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
    [CrossRef]
  4. K. Gallo, M. Levenius, F. Laurell, and V. Pasiskevicius, Appl. Phys. Lett. 98, 161113 (2011).
    [CrossRef]
  5. M. Levenius, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett. 101, 121114 (2012).
    [CrossRef]
  6. S. Saltiel and Y. S. Kivshar, Opt. Lett. 25, 1204 (2000).
    [CrossRef]
  7. M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, and L. H. Peng, Appl. Phys. B 110, 459 (2013).
    [CrossRef]
  8. H. C. Liu and A. H. Kung, Opt. Express 16, 9714 (2008).
    [CrossRef]
  9. P. Xu, J. F. Wang, C. Li, Z. D. Xie, X. J. Lv, H. Y. Leng, J. S. Zhao, and S. N. Zhu, Opt. Express 17, 4289 (2009).
    [CrossRef]
  10. L. H. Peng, H. M. Wu, A. H. Kung, and C.-M. Lai, Ferroelectric Crystals for Photonic Applications, Springer Series in Materials Science (Springer, 2009).
  11. J.-P. Meyn and M. M. Fejer, Opt. Lett. 22, 1214 (1997).
    [CrossRef]

2013 (1)

M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, and L. H. Peng, Appl. Phys. B 110, 459 (2013).
[CrossRef]

2012 (1)

M. Levenius, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett. 101, 121114 (2012).
[CrossRef]

2011 (1)

K. Gallo, M. Levenius, F. Laurell, and V. Pasiskevicius, Appl. Phys. Lett. 98, 161113 (2011).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

2000 (2)

N. G. R. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef]

S. Saltiel and Y. S. Kivshar, Opt. Lett. 25, 1204 (2000).
[CrossRef]

1998 (1)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

1997 (1)

Arie, A.

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

Bahabad, A.

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

Berger, V.

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

Boudrioua, A.

M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, and L. H. Peng, Appl. Phys. B 110, 459 (2013).
[CrossRef]

Broderick, N. G. R.

N. G. R. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef]

Fejer, M. M.

Fischer, A.

M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, and L. H. Peng, Appl. Phys. B 110, 459 (2013).
[CrossRef]

Gallo, K.

M. Levenius, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett. 101, 121114 (2012).
[CrossRef]

K. Gallo, M. Levenius, F. Laurell, and V. Pasiskevicius, Appl. Phys. Lett. 98, 161113 (2011).
[CrossRef]

Habshoosh, N.

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

Hanna, D.

N. G. R. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef]

Kivshar, Y. S.

Kung, A. H.

H. C. Liu and A. H. Kung, Opt. Express 16, 9714 (2008).
[CrossRef]

L. H. Peng, H. M. Wu, A. H. Kung, and C.-M. Lai, Ferroelectric Crystals for Photonic Applications, Springer Series in Materials Science (Springer, 2009).

Lai, C.-M.

L. H. Peng, H. M. Wu, A. H. Kung, and C.-M. Lai, Ferroelectric Crystals for Photonic Applications, Springer Series in Materials Science (Springer, 2009).

Laurell, F.

K. Gallo, M. Levenius, F. Laurell, and V. Pasiskevicius, Appl. Phys. Lett. 98, 161113 (2011).
[CrossRef]

Lazoul, M.

M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, and L. H. Peng, Appl. Phys. B 110, 459 (2013).
[CrossRef]

Leng, H. Y.

Levenius, M.

M. Levenius, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett. 101, 121114 (2012).
[CrossRef]

K. Gallo, M. Levenius, F. Laurell, and V. Pasiskevicius, Appl. Phys. Lett. 98, 161113 (2011).
[CrossRef]

Li, C.

Liu, H. C.

Lv, X. J.

Meyn, J.-P.

Offerhaus, H.

N. G. R. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef]

Pasiskevicius, V.

M. Levenius, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett. 101, 121114 (2012).
[CrossRef]

K. Gallo, M. Levenius, F. Laurell, and V. Pasiskevicius, Appl. Phys. Lett. 98, 161113 (2011).
[CrossRef]

Peng, L. H.

M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, and L. H. Peng, Appl. Phys. B 110, 459 (2013).
[CrossRef]

L. H. Peng, H. M. Wu, A. H. Kung, and C.-M. Lai, Ferroelectric Crystals for Photonic Applications, Springer Series in Materials Science (Springer, 2009).

Richardson, D.

N. G. R. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef]

Ross, G.

N. G. R. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef]

Saltiel, S.

Simohamed, L. M.

M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, and L. H. Peng, Appl. Phys. B 110, 459 (2013).
[CrossRef]

Wang, J. F.

Wu, H. M.

L. H. Peng, H. M. Wu, A. H. Kung, and C.-M. Lai, Ferroelectric Crystals for Photonic Applications, Springer Series in Materials Science (Springer, 2009).

Xie, Z. D.

Xu, P.

Zhao, J. S.

Zhu, S. N.

Appl. Phys. B (1)

M. Lazoul, A. Boudrioua, L. M. Simohamed, A. Fischer, and L. H. Peng, Appl. Phys. B 110, 459 (2013).
[CrossRef]

Appl. Phys. Lett. (2)

K. Gallo, M. Levenius, F. Laurell, and V. Pasiskevicius, Appl. Phys. Lett. 98, 161113 (2011).
[CrossRef]

M. Levenius, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett. 101, 121114 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

N. G. R. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef]

Other (1)

L. H. Peng, H. M. Wu, A. H. Kung, and C.-M. Lai, Ferroelectric Crystals for Photonic Applications, Springer Series in Materials Science (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

QPM in 2D NLPCs.

Fig. 2.
Fig. 2.

Experimental setup used for optical parametric generation in 2D PPLT. HWP, half-wave plate; PBS, polarization beam splitter; M, mirror; L, lens; F, high pass filter at 700 nm; S, rectangular slit; O1 and O2, microscopic objectives; BS, beam splitter; OSA, optical spectrum analyzer.

Fig. 3.
Fig. 3.

Multiwavelength parametric generation by the 2D PPLT in the collinear direction.

Fig. 4.
Fig. 4.

Multiwavelength parametric generation by the 2D PPLT in a noncollinear direction θs=1.5°.

Fig. 5.
Fig. 5.

Generated signal wavelengths versus the angular transverse position.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{kpcos(θp)=kscos(θs)+kicos(θi)+Kmncos(θmn),kpsin(θp)=kssin(θs)+kisin(θi)+Kmnsin(θmn).
θs=±arccos(αδ±βα2+β2+δ2α2+β2),
{α=2ks(kpcos(θp)Kmncos(θmn)),β=2ks(kpsin(θp)Kmnsin(θmn)),δ=ki2ks2kp2Kmn2+2kpKmncos(θp+θmn).

Metrics