Abstract

In this Letter, a dispersion-based gas sensing method applied to detection of optically thick samples is presented. We show that chirped laser dispersion spectroscopy (CLaDS) technique provides perfectly linear signal response over a wide range of target analyte concentrations. Using the most convenient chirp-modulated CLaDS detection scheme, it enables spectroscopic measurements in a line-locked mode from the minimum detection limit up to >99% peak molecular absorption.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Chen, F. Cazier, D. Boucher, F. K. Tittel, and P. B. Davies, Laser Phys. 11, 594 (2001).
  2. J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
    [CrossRef]
  3. M. A. Zondlo, M. E. Paige, S. M. Massick, and J. A. Silver, J. Geophys. Res. 115, D20309 (2010).
    [CrossRef]
  4. G. Wysocki and D. Weidmann, Opt. Express 18, 26123 (2010).
    [CrossRef]
  5. M. Nikodem, D. Weidmann, and G. Wysocki, Appl. Phys. B 109, 477 (2012).
    [CrossRef]
  6. M. Nikodem and G. Wysocki, Sensors 12, 16466 (2012).
    [CrossRef]
  7. M. Nikodem, D. Weidmann, C. Smith, and G. Wysocki, Opt. Express 20, 644 (2012).
    [CrossRef]
  8. Y. Wang, H. Cai, J. Geng, Z. Pan, D. Chen, and Z. Fang, Chin. Opt. Lett. 5, 552 (2007).
  9. D. Rojas, P. Ljung, and O. Axner, Spectrochim. Acta. Part B 52, 1663 (1997).
    [CrossRef]

2012 (3)

M. Nikodem, D. Weidmann, and G. Wysocki, Appl. Phys. B 109, 477 (2012).
[CrossRef]

M. Nikodem and G. Wysocki, Sensors 12, 16466 (2012).
[CrossRef]

M. Nikodem, D. Weidmann, C. Smith, and G. Wysocki, Opt. Express 20, 644 (2012).
[CrossRef]

2010 (2)

M. A. Zondlo, M. E. Paige, S. M. Massick, and J. A. Silver, J. Geophys. Res. 115, D20309 (2010).
[CrossRef]

G. Wysocki and D. Weidmann, Opt. Express 18, 26123 (2010).
[CrossRef]

2008 (1)

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

2007 (1)

2001 (1)

W. Chen, F. Cazier, D. Boucher, F. K. Tittel, and P. B. Davies, Laser Phys. 11, 594 (2001).

1997 (1)

D. Rojas, P. Ljung, and O. Axner, Spectrochim. Acta. Part B 52, 1663 (1997).
[CrossRef]

Axner, O.

D. Rojas, P. Ljung, and O. Axner, Spectrochim. Acta. Part B 52, 1663 (1997).
[CrossRef]

Boucher, D.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

W. Chen, F. Cazier, D. Boucher, F. K. Tittel, and P. B. Davies, Laser Phys. 11, 594 (2001).

Cai, H.

Cazier, F.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

W. Chen, F. Cazier, D. Boucher, F. K. Tittel, and P. B. Davies, Laser Phys. 11, 594 (2001).

Chen, D.

Chen, W.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

W. Chen, F. Cazier, D. Boucher, F. K. Tittel, and P. B. Davies, Laser Phys. 11, 594 (2001).

Cousin, J.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

Davies, P. B.

W. Chen, F. Cazier, D. Boucher, F. K. Tittel, and P. B. Davies, Laser Phys. 11, 594 (2001).

Dewaele, D.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

Douay, M.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

Fang, Z.

Fertein, E.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

Fourmentin, M.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

Geng, J.

Ljung, P.

D. Rojas, P. Ljung, and O. Axner, Spectrochim. Acta. Part B 52, 1663 (1997).
[CrossRef]

Massick, S. M.

M. A. Zondlo, M. E. Paige, S. M. Massick, and J. A. Silver, J. Geophys. Res. 115, D20309 (2010).
[CrossRef]

Nikodem, M.

M. Nikodem, D. Weidmann, and G. Wysocki, Appl. Phys. B 109, 477 (2012).
[CrossRef]

M. Nikodem and G. Wysocki, Sensors 12, 16466 (2012).
[CrossRef]

M. Nikodem, D. Weidmann, C. Smith, and G. Wysocki, Opt. Express 20, 644 (2012).
[CrossRef]

Nouali, H.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

Paige, M. E.

M. A. Zondlo, M. E. Paige, S. M. Massick, and J. A. Silver, J. Geophys. Res. 115, D20309 (2010).
[CrossRef]

Pan, Z.

Rojas, D.

D. Rojas, P. Ljung, and O. Axner, Spectrochim. Acta. Part B 52, 1663 (1997).
[CrossRef]

Rothman, L. S.

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

Silver, J. A.

M. A. Zondlo, M. E. Paige, S. M. Massick, and J. A. Silver, J. Geophys. Res. 115, D20309 (2010).
[CrossRef]

Smith, C.

Tittel, F. K.

W. Chen, F. Cazier, D. Boucher, F. K. Tittel, and P. B. Davies, Laser Phys. 11, 594 (2001).

Wang, Y.

Weidmann, D.

Wysocki, G.

M. Nikodem, D. Weidmann, C. Smith, and G. Wysocki, Opt. Express 20, 644 (2012).
[CrossRef]

M. Nikodem, D. Weidmann, and G. Wysocki, Appl. Phys. B 109, 477 (2012).
[CrossRef]

M. Nikodem and G. Wysocki, Sensors 12, 16466 (2012).
[CrossRef]

G. Wysocki and D. Weidmann, Opt. Express 18, 26123 (2010).
[CrossRef]

Zondlo, M. A.

M. A. Zondlo, M. E. Paige, S. M. Massick, and J. A. Silver, J. Geophys. Res. 115, D20309 (2010).
[CrossRef]

Appl. Phys. B (1)

M. Nikodem, D. Weidmann, and G. Wysocki, Appl. Phys. B 109, 477 (2012).
[CrossRef]

Chin. Opt. Lett. (1)

J. Geophys. Res. (1)

M. A. Zondlo, M. E. Paige, S. M. Massick, and J. A. Silver, J. Geophys. Res. 115, D20309 (2010).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. Cousin, W. Chen, M. Fourmentin, E. Fertein, D. Boucher, F. Cazier, H. Nouali, D. Dewaele, M. Douay, and L. S. Rothman, J. Quant. Spectrosc. Radiat. Transfer 109, 151 (2008).
[CrossRef]

Laser Phys. (1)

W. Chen, F. Cazier, D. Boucher, F. K. Tittel, and P. B. Davies, Laser Phys. 11, 594 (2001).

Opt. Express (2)

Sensors (1)

M. Nikodem and G. Wysocki, Sensors 12, 16466 (2012).
[CrossRef]

Spectrochim. Acta. Part B (1)

D. Rojas, P. Ljung, and O. Axner, Spectrochim. Acta. Part B 52, 1663 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental CLaDS setup (M, mirror; BS, beam splitter). Reference branch used in CM-CLaDS measurements is also indicated.

Fig. 2.
Fig. 2.

(a) D-CLaDS signals for four different N2O concentrations (all spectra are scaled by a constant factor for direct comparison with the 2500 ppmv sample). Shape of the dispersion spectrum does not change even when fractional absorption gets above 90% for the 2500 ppmv sample, which significantly simplifies the spectral fitting process. (b) D-CLaDS amplitude versus N2O concentration: perfect linear response of the system is obtained for fractional absorption ranging from 1.8% to 90%.

Fig. 3.
Fig. 3.

(a) Time series of CM-CLaDS signal amplitude recorded in a line-locked mode as the N2O concentration was varied from single ppmv levels to a fraction of a percent (fractional absorption ranging from 104 level to more than 0.99). (b) CM-CLaDS amplitude versus N2O concentration shows excellent linear response when measuring both optically thin and thick samples.

Metrics