Abstract

Increasing the space-bandwidth product of an imaging system will lead to a complex and expensive optical system. Techniques exist to simplify imaging systems. We propose the use of a hybrid imaging system using pupil phase modulation. Based on the reconstructed image’s mean-squared error, we compute how this error is affected under various third-order aberrations. We determine the best cubic phase-mask parameter and study the impact of the orientation of the coma and astigmatism, as we have in a real optical system (from 0 to 2π). We then compute how the reconstructed image’s quality varies by adding defocus-related aberrations (defocus and/or field curvature). Based on our analysis, we determine the limits of a hybrid imaging system using a cubic phase mask to develop simplified imaging systems. We conclude that the simplified lens design can be corrected if its aberrations are limited to 1 lambda of coma, astigmatism, and spherical aberrations and less than 1 lambda of field curvature or defocus.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  2. I. Stamenov, I. P. Agurok, and J. E. Ford, Appl. Opt. 51, 7648 (2012).
    [CrossRef]
  3. S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, Opt. Express 16, 4965 (2008).
    [CrossRef]
  4. R. Völkel, M. Eisner, and K. J. Weible, Microelectron. Eng. 67–68, 461 (2003).
    [CrossRef]
  5. D. J. Brady and N. Hagen, Opt. Express 17, 10659 (2009).
    [CrossRef]
  6. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, Appl. Opt. 46, 463 (2007).
    [CrossRef]
  7. F. de la Barrière, G. Druart, N. Guerineau, and J. Taboury, Appl. Opt. 50, 943 (2011).
    [CrossRef]
  8. O. S. Coassairt, D. Miau, and S. K. Nayar, J. Opt. Soc. Am. A 28, 2540 (2011).
    [CrossRef]
  9. J. Dowski and W. T. Cathey, Appl. Opt. 34, 1859 (1995).
    [CrossRef]
  10. E. R. Dowski and G. E. Johnson, SPIE 3779, 137 (1999).
    [CrossRef]
  11. S.-H. Lee, N.-C. Park, Y.-P. Park, and K.-S. Park, Micro. Tech. 16, 195 (2010).
    [CrossRef]
  12. K. Kubala, E. Dowski, and W. Cathey, Opt. Express 11, 2102 (2003).
    [CrossRef]
  13. S. Mezouari, G. Muyo, and A. R. Harvey, J. Opt. Soc. Am. A 23, 1058 (2006).
    [CrossRef]
  14. H. Lei, H. Feng, X. Tao, and Z. Xu, Appl. Opt. 45, 7255 (2006).
    [CrossRef]
  15. T. Vettenburg, N. Bustin, and A. R. Harvey, Opt. Express 18, 9220 (2010).
    [CrossRef]
  16. F. Diaz, F. Goudail, B. Loiseaux, and J.-P. Huignard, J. Opt. Soc. Am. A 27, 2123 (2010).
    [CrossRef]

2012 (1)

2011 (2)

2010 (3)

2009 (1)

2008 (1)

2007 (1)

2006 (2)

2003 (2)

K. Kubala, E. Dowski, and W. Cathey, Opt. Express 11, 2102 (2003).
[CrossRef]

R. Völkel, M. Eisner, and K. J. Weible, Microelectron. Eng. 67–68, 461 (2003).
[CrossRef]

1999 (1)

E. R. Dowski and G. E. Johnson, SPIE 3779, 137 (1999).
[CrossRef]

1995 (1)

Agurok, I. P.

Brady, D. J.

Bustin, N.

Cathey, W.

Cathey, W. T.

Catrysse, P. B.

Coassairt, O. S.

de la Barrière, F.

Diaz, F.

Dinyari, R.

Dowski, E.

Dowski, E. R.

E. R. Dowski and G. E. Johnson, SPIE 3779, 137 (1999).
[CrossRef]

Dowski, J.

Druart, G.

Eisner, M.

R. Völkel, M. Eisner, and K. J. Weible, Microelectron. Eng. 67–68, 461 (2003).
[CrossRef]

Feng, H.

Ford, J. E.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Goudail, F.

Guerineau, N.

Hagen, N.

Harvey, A. R.

Huang, K.

Huignard, J.-P.

Johnson, G. E.

E. R. Dowski and G. E. Johnson, SPIE 3779, 137 (1999).
[CrossRef]

Kubala, K.

Lee, S.-H.

S.-H. Lee, N.-C. Park, Y.-P. Park, and K.-S. Park, Micro. Tech. 16, 195 (2010).
[CrossRef]

Lei, H.

Loiseaux, B.

Mezouari, S.

Miau, D.

Morrison, R. L.

Muyo, G.

Nayar, S. K.

Park, K.-S.

S.-H. Lee, N.-C. Park, Y.-P. Park, and K.-S. Park, Micro. Tech. 16, 195 (2010).
[CrossRef]

Park, N.-C.

S.-H. Lee, N.-C. Park, Y.-P. Park, and K.-S. Park, Micro. Tech. 16, 195 (2010).
[CrossRef]

Park, Y.-P.

S.-H. Lee, N.-C. Park, Y.-P. Park, and K.-S. Park, Micro. Tech. 16, 195 (2010).
[CrossRef]

Peumans, P.

Rim, S. B.

Stack, R. A.

Stamenov, I.

Taboury, J.

Tao, X.

Tremblay, E. J.

Vettenburg, T.

Völkel, R.

R. Völkel, M. Eisner, and K. J. Weible, Microelectron. Eng. 67–68, 461 (2003).
[CrossRef]

Weible, K. J.

R. Völkel, M. Eisner, and K. J. Weible, Microelectron. Eng. 67–68, 461 (2003).
[CrossRef]

Xu, Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

RIQ as a function of aberration and cubic phase-mask parameter. No noise is added.

Fig. 2.
Fig. 2.

RIQ as a function of the relative angle of the PSF for astigmatism and coma. The first row presents data for a phase-mask parameter α=5 and 1λ of aberration. In the second row, α=15 and the aberration is 3λ.

Fig. 3.
Fig. 3.

Maximum compensated defocus as a function of the aberration coefficient for spherical, coma, and astigmatism.

Fig. 4.
Fig. 4.

Optimal cubic phase-mask parameter as a function of the aberration coefficient for spherical, coma, and astigmatism.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

RIQ=10log10|RIijOij|2,
I=PSFO+n,
RI=gI.
P(x,y)=exp{[i2πλ[W40(x2+y2)2+W20(x2+y2)+W22(y2)+W31(x2+y2)y]+iα(x3+y3)]},
PSF=TF1[P(x,y)P*(x,y)].

Metrics