Abstract

A novel mechanism for active directional beaming by mechanical actuation of double-sided plasmonic surface gratings is proposed. It is shown that the asymmetric mechanical actuation of optimally designed plasmonic surface gratings surrounding a subwavelength metal slit can produce a steerable off-axis beaming effect. The controllability of the beam direction provides an opportunity to develop novel active plasmonic devices and systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Lee, K. Hoshino, A. Alu, and X. Zhang, Opt. Express 21, 2748 (2013).
    [CrossRef]
  2. S. Reichelt, R. Häussler, G. Fütterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, Opt. Lett. 37, 1955 (2012).
    [CrossRef]
  3. T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
    [CrossRef]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
    [CrossRef]
  5. E. Ozbay, Science 311, 189 (2006).
    [CrossRef]
  6. H. Kim, J. Park, and B. Lee, Opt. Lett. 34, 2569 (2009).
    [CrossRef]
  7. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotechnol. 8, 252 (2013).
    [CrossRef]
  8. K. V. Acoleyen, J. Roels, T. Claes, D. V. Thourhout, and R. Baets, in IEEE International Conference on Group IV Photonics (2011), p. 371.
  9. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, Opt. Express 16, 16903 (2008).
    [CrossRef]
  10. E. S. Hung and S. D. Senturia, J. Microelectromech. Syst. 8, 497 (1999).
    [CrossRef]

2013 (2)

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotechnol. 8, 252 (2013).
[CrossRef]

Y. Lee, K. Hoshino, A. Alu, and X. Zhang, Opt. Express 21, 2748 (2013).
[CrossRef]

2012 (1)

2010 (1)

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

2009 (1)

2008 (1)

2006 (1)

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

1999 (1)

E. S. Hung and S. D. Senturia, J. Microelectromech. Syst. 8, 497 (1999).
[CrossRef]

Acoleyen, K. V.

K. V. Acoleyen, J. Roels, T. Claes, D. V. Thourhout, and R. Baets, in IEEE International Conference on Group IV Photonics (2011), p. 371.

Alu, A.

Baets, R.

K. V. Acoleyen, J. Roels, T. Claes, D. V. Thourhout, and R. Baets, in IEEE International Conference on Group IV Photonics (2011), p. 371.

Claes, T.

K. V. Acoleyen, J. Roels, T. Claes, D. V. Thourhout, and R. Baets, in IEEE International Conference on Group IV Photonics (2011), p. 371.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Fütterer, G.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Häussler, R.

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Hoshino, K.

Hung, E. S.

E. S. Hung and S. D. Senturia, J. Microelectromech. Syst. 8, 497 (1999).
[CrossRef]

Jung, J.

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Kanbayashi, Y.

Kato, H.

Kim, H.

Kim, S.

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Lee, B.

Lee, I.-M.

Lee, Y.

Leister, N.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

Ou, J.-Y.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotechnol. 8, 252 (2013).
[CrossRef]

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Park, J.

Plum, E.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotechnol. 8, 252 (2013).
[CrossRef]

Reichelt, S.

Roels, J.

K. V. Acoleyen, J. Roels, T. Claes, D. V. Thourhout, and R. Baets, in IEEE International Conference on Group IV Photonics (2011), p. 371.

Senturia, S. D.

E. S. Hung and S. D. Senturia, J. Microelectromech. Syst. 8, 497 (1999).
[CrossRef]

Thourhout, D. V.

K. V. Acoleyen, J. Roels, T. Claes, D. V. Thourhout, and R. Baets, in IEEE International Conference on Group IV Photonics (2011), p. 371.

Usukura, N.

Zhang, J.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotechnol. 8, 252 (2013).
[CrossRef]

Zhang, X.

Zheludev, N. I.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotechnol. 8, 252 (2013).
[CrossRef]

J. Microelectromech. Syst. (1)

E. S. Hung and S. D. Senturia, J. Microelectromech. Syst. 8, 497 (1999).
[CrossRef]

Nat. Nanotechnol. (1)

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotechnol. 8, 252 (2013).
[CrossRef]

Nat. Photonics (1)

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef]

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Other (1)

K. V. Acoleyen, J. Roels, T. Claes, D. V. Thourhout, and R. Baets, in IEEE International Conference on Group IV Photonics (2011), p. 371.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Directional beaming effects by the subwavelength metal slit with double-sided plasmonic surface gratings with period p, the left and right air gaps of tL and tR, and the offset of hs in cases of (a) tL>tR and (b) tL<tR.

Fig. 2.
Fig. 2.

(a) Schematic diagram of metal–air–dieletric–metal–air layers and SP mode propagating along the +x-direction, and (b) profiles of effective indices of metal/air/dielectric/metal/air layers. There exist two SP modes (modes A and B) in the multilayer structure. (c) The magnetic field of the two modes and refractive index profiles of the multilayer structure.

Fig. 3.
Fig. 3.

(a) Diffraction field distributions generated by the subwavelength metal slits with no grating. (b) and (c) Diffraction field distributions with air gap configurations of the double-sided surface gratings for the left and right gratings of (b) (tL,tR)=(40nm,0nm), (c) (tL,tR)=(20nm,20nm), and (d) (tL,tR)=(0nm,40nm). (e) Angular spectrum profiles of the diffraction fields for (tL,tR)=(40nm,0nm) [blue], (tL,tR)=(20nm,20nm) [green], and (tL,tR)=(0nm,40nm) [red], which have a peak on 2.4°, 0°, and 2.4°, respectively, and that of the diffraction field from a bare slit [black].

Fig. 4.
Fig. 4.

Air gap configuration, (tL,tR), as a function of the radiation angle of the diffracted beaming field.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ex=Tx(kx)ej(kxx+(2π/λ)2kx2z)dkx,

Metrics