Abstract

We investigate the ultradeep subwavelength imaging of a superlens with a surface plasmon polariton (SPP) cavity. A silver layer is added in the imaging region of the superlens to form an Ag film lens/photoresist/Ag layer cavity, in which the long-range plasmon mode is drastically suppressed and the field of the imaging is significantly amplified and extended over to the entire imaging region due to the SPP resonance inside the cavity. Results show that much improved quality of image with much suppressed sidelobes and much extended depth of focus can be obtained with the cavity structure when compared with the conventional open structure. This is confirmed by the transfer function of the system, which becomes flatter with the cavity structure. The proposed method provides a novel and practically feasible way to achieve images with both high resolution and large depth of field.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
    [CrossRef]
  3. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, J. Opt. Soc. Am. B 23, 2383 (2006).
    [CrossRef]
  4. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
    [CrossRef]
  5. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, Nano Lett. 7, 3360 (2007).
    [CrossRef]
  6. G. Tremblay and Y. Sheng, Opt. Express 19, 20634 (2011).
    [CrossRef]
  7. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).
  8. D. O. S. Melville and R. J. Blaikie, J. Opt. Soc. Am. B 23, 461 (2006).
    [CrossRef]
  9. Y. Xiong, Z. Liu, and X. Zhang, Appl. Phys. Lett. 93, 111116 (2008).
    [CrossRef]
  10. X. Yang, B. Zeng, C. Wang, and X. Luo, Opt. Express 17, 21560 (2009).
    [CrossRef]
  11. H. Wang, J. Q. Bagley, L. Tsang, S. Huang, K. Ding, and A. Ishimaru, J. Opt. Soc. Am. B 28, 2499 (2011).
    [CrossRef]
  12. S. Huang, H. Wang, K. Ding, and L. Tsang, Opt. Lett. 37, 1295 (2012).
    [CrossRef]
  13. H. Wang, L. Tsang, and S. Huang, Opt. Lett. 37, 2262 (2012).
    [CrossRef]
  14. G. Tremblay and Y. Sheng, Appl. Opt. 49, A36 (2010).
    [CrossRef]

2012

2011

2010

2009

2008

Y. Xiong, Z. Liu, and X. Zhang, Appl. Phys. Lett. 93, 111116 (2008).
[CrossRef]

2007

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef]

2006

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef]

2003

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).

2000

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

Bagley, J. Q.

Blaikie, R. J.

Ding, K.

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, J. Opt. Soc. Am. B 23, 2383 (2006).
[CrossRef]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef]

Huang, S.

Ishimaru, A.

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef]

Liu, Z.

Y. Xiong, Z. Liu, and X. Zhang, Appl. Phys. Lett. 93, 111116 (2008).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, J. Opt. Soc. Am. B 23, 2383 (2006).
[CrossRef]

Luo, X.

Melville, D. O. S.

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).

Sheng, Y.

Steele, J. M.

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef]

Tremblay, G.

Tsang, L.

Wang, C.

Wang, H.

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).

Xiong, Y.

Y. Xiong, Z. Liu, and X. Zhang, Appl. Phys. Lett. 93, 111116 (2008).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

Yang, X.

Zeng, B.

Zhang, X.

Y. Xiong, Z. Liu, and X. Zhang, Appl. Phys. Lett. 93, 111116 (2008).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, J. Opt. Soc. Am. B 23, 2383 (2006).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Xiong, Z. Liu, and X. Zhang, Appl. Phys. Lett. 93, 111116 (2008).
[CrossRef]

J. Mod. Opt.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).

J. Opt. Soc. Am. B

Nano Lett.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematics of a conventional and the proposed SPP cavity superlens structures. (a) Side view of the conventional open superlens structure, (b) side view of the SPP cavity superlens structure, and (c) top view of the Cr mask with aperiodic layout traces.

Fig. 2.
Fig. 2.

Electric field distributions in the photoresist with two superlens imaging systems. (a) 1 nm deep in the photoresist layer of the structure shown in Fig. 1(a) and (b) 5 nm deep in the photoresist layer of the structure shown in Fig. 1(b).

Fig. 3.
Fig. 3.

Electric field distributions of images at different depths inside the photoresist layer. The first row [(a)–(d)]: conventional open structure superlens. The second row [(e)–(h)]: SPP cavity structure superlens.

Fig. 4.
Fig. 4.

Effect of cavity length on resolution of the SPP cavity superlens system. (a) The binary object function consists of the layout of traces with 45 nm linewidth and two groups of horizontal and vertical grating slots with linewidth/separation of 30nm/50nm and 15nm/20nm. The electric field distributions intercepted at (b) 15 nm deep in the photoresist when cavity length=40nm, (c) 15 nm deep in the photoresist when cavity length=30nm, (d) 5 nm deep in the photoresist when cavity length=15nm, and (e) 5 nm deep in the photoresist when cavity length=10nm. (f) The line-scan of electric field intensity distributions of 15nm/20nm grating in (b)–(e).

Fig. 5.
Fig. 5.

Superlens transmission coefficients for the TM wave. (a) Transmission coefficients in the open (black line) and cavity structures with different cavity lengths. (b) Map of transmission coefficient as a function of cavity length. The dashed line is the transmission coefficient at a 20 nm cavity length.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ3=t23t34exp(ik3zd3)1+r23r34exp(2ik3zd3),
r23=ε3k2zε2k3zε3k2z+ε2k3z,r34=ε3k4zε4k3zε3k4z+ε4k3z,t23=1+r23,t34=1+r34,
kjz=εjk02kx2,j=2,3,4.
τcavity=1+r45exp(2ik4zd4)1r3r45exp(2ik4zd4),
TFtotal=exp(ik2zd2)·t23t34exp(ik3zd3)1+r23r34exp(2ik3zd3)·1+r45exp(2ik4zd4)1r3r45exp(2ik4zd4).

Metrics