Abstract

In this Letter, an all-fiber refractometer with a simple configuration of periodical tapers on a photonic crystal fiber (PCF) is proposed and investigated experimentally. The proposed fiber refractive index (RI) sensor consists of a PCF sandwiched between two standard single-mode fibers, with tapers periodically fabricated along the PCF using a CO2 laser beam focused by a ZnSe cylindrical lens. The proposed fiber sensor can be used for RI sensing by measuring the wavelength shift of the multimode interference dip over the transmission spectrum. An average sensitivity of 222nm/RIU has been experimentally achieved over a RI range from 1.33 to 1.38. The proposed refractometer is also significantly less sensitive to temperature, and an experimental demonstration of this reduced sensitivity is presented. The proposed RI sensor benefits from simplicity and low-cost and achieves a competitive sensitivity compared with other existing fiber-optic sensors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, Opt. Express 15, 1491 (2007).
    [CrossRef]
  2. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
    [CrossRef]
  3. W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, J. Lightwave Technol. 27, 3933 (2009).
    [CrossRef]
  4. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 34, 617 (2009).
    [CrossRef]
  5. G. Kakarantzas, T. Birks, and P. Russell, Opt. Lett. 27, 1013 (2002).
    [CrossRef]
  6. Y. Rao, Y. Wang, Z. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
    [CrossRef]
  7. Y. Wang, L. Xiao, D. Wang, and W. Jin, Opt. Lett. 31, 3414 (2006).
    [CrossRef]
  8. Y. Wang, L. Xiao, D. Wang, and W. Jin, Opt. Lett. 32, 1035 (2007).
    [CrossRef]
  9. T. A. Birks, J. C. Knight, and P. St. J. Russel, Opt. Lett. 22, 961 (1997).
    [CrossRef]
  10. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
    [CrossRef]
  11. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
    [CrossRef]
  12. P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
    [CrossRef]
  13. P. Nunes, N. Mortensen, J. Kutter, and K. Mogensen, Opt. Lett. 33, 1623 (2008).
    [CrossRef]

2013 (1)

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

2009 (2)

2008 (1)

2007 (3)

2006 (1)

2003 (1)

2002 (1)

1999 (1)

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

1997 (1)

Badenes, G.

Birks, T.

Birks, T. A.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russel, Opt. Lett. 22, 961 (1997).
[CrossRef]

Bo, L.

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

Bock, W. J.

Brambilla, G.

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

Chen, J.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Ding, M.

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

Eftimov, T. A.

Farrell, G.

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Gander, M. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

Jha, R.

Jin, W.

Jones, J. D. C.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

Kakarantzas, G.

Knight, J. C.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russel, Opt. Lett. 22, 961 (1997).
[CrossRef]

Kutter, J.

Lee, T.

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

McBride, R.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

Mikulic, P.

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, Opt. Express 15, 1491 (2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Mogensen, K.

Mogilevtsev, D.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

Mortensen, N.

Nunes, P.

Pruneri, V.

Ran, Z.

Rao, Y.

Russel, P. St. J.

Russell, P.

Russell, P. St. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Semenova, Y.

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

Villatoro, J.

Wang, D.

Wang, P.

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

Wang, Y.

Wu, Q.

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

Xiao, L.

Zhu, T.

Appl. Phys. Lett. (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Electron. Lett. (2)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Electron. Lett. 35, 63 (1999).
[CrossRef]

IEEE Sens. J. (1)

P. Wang, G. Brambilla, M. Ding, T. Lee, L. Bo, Y. Semenova, Q. Wu, and G. Farrell, IEEE Sens. J. 13, 180 (2013).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Microscope images of a splice between the LMA-8 PCF and the SMF28 fiber. Note that holes at the splice region between the PCF and the SMF28 fiber did not collapse.

Fig. 2.
Fig. 2.

Experimental setup for the fabrication of periodically tapered PCF.

Fig. 3.
Fig. 3.

Microscope images of periodically tapered PCF. The zoom-in image of PCF taper (a), cross sections of untapered (b), and tapered (c) PCF waist.

Fig. 4.
Fig. 4.

Transmission spectra of the SMF28–PCF–SMF28 fiber structure without and with a progressively increasing number of periodical tapers; spectra were recorded during the fabrication process.

Fig. 5.
Fig. 5.

Transmission spectra of SMF periodically tapered PCF–SMF structure when the period length is (a) 410 μm, (b) 430 μm, (c) 450 μm, and (d) 470 μm.

Fig. 6.
Fig. 6.

Measured spectral response at different surrounding RIs and measured difference of the peak wavelength shift versus surrounding RIs (inset).

Fig. 7.
Fig. 7.

RI sensitivities of the fiber refractometers (with the error bars) versus different period length of the sandwiched PCF.

Fig. 8.
Fig. 8.

Measured spectral response at different temperatures when the SMF periodically tapered PCF–SMF structure is in air and measured difference of the peak wavelength shift versus different temperature (inset).

Metrics