Abstract

This Letter shows the effect of the geometrical and material properties of lead lines and connections on the robustness and reliability of optical antennas working as distributed bolometers. We analyze the operational limits of the biasing voltage using a mutiphysics finite element method. We demonstrate that, after evaluating the effect of the electromagnetic irradiance falling on the device, biasing voltage is the main limiting factor to maintain operative titanium optical antennas. Results have been experimentally verified by finding the biasing values needed to destroy optical antennas working as distributed bolometers. Structural damage has been identified from scanning electron microscopy images.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
    [CrossRef]
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
    [CrossRef]
  3. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
    [CrossRef]
  4. C. Fumeaux, J. Alda, and G. Boreman, Opt. Lett. 24, 1629 (1999).
    [CrossRef]
  5. I. Codreanu, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 44, 155 (2003).
    [CrossRef]
  6. A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
    [CrossRef]
  7. A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 7, 073093 (2013).
    [CrossRef]
  8. P. Krenz, B. Lail, and G. Boreman, IEEE J. Sel. Top. Quantum Electron. 17, 218 (2011).
    [CrossRef]
  9. B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, IEEE Trans. Nanotechnol. 12, 270 (2013).
    [CrossRef]
  10. T. Mandviwala, B. Lail, and G. Boreman, J. Vac. Sci. Technol. B 24, 2612 (2006).
    [CrossRef]
  11. M. Silva-Lopez, A. Cuadrado, N. Llombart, and J. Alda, Opt. Express 21, 10867 (2013).
    [CrossRef]
  12. F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
    [CrossRef]
  13. F. J. Gonzalez and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
    [CrossRef]
  14. A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
    [CrossRef]
  15. C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
    [CrossRef]
  16. X. Chen, Q. Lv, and X. Yi, Optik 122, 2143 (2011).
    [CrossRef]
  17. M. V. Diamanti, S. Codeluppi, A. Cordioli, and M. P. Pedeferri, J. Exp. Nanosci. 4, 365 (2009).
    [CrossRef]
  18. S. Wei-Feng, G. Hubert, F. Yong-Liang, J. Zui-Min, and L. Yong-Kang, Chin. Phys. B 17, 3003 (2008).
    [CrossRef]

2013 (3)

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 7, 073093 (2013).
[CrossRef]

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, IEEE Trans. Nanotechnol. 12, 270 (2013).
[CrossRef]

M. Silva-Lopez, A. Cuadrado, N. Llombart, and J. Alda, Opt. Express 21, 10867 (2013).
[CrossRef]

2012 (1)

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

2011 (4)

P. Krenz, B. Lail, and G. Boreman, IEEE J. Sel. Top. Quantum Electron. 17, 218 (2011).
[CrossRef]

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

X. Chen, Q. Lv, and X. Yi, Optik 122, 2143 (2011).
[CrossRef]

2009 (2)

M. V. Diamanti, S. Codeluppi, A. Cordioli, and M. P. Pedeferri, J. Exp. Nanosci. 4, 365 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

2008 (2)

S. Wei-Feng, G. Hubert, F. Yong-Liang, J. Zui-Min, and L. Yong-Kang, Chin. Phys. B 17, 3003 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

2006 (1)

T. Mandviwala, B. Lail, and G. Boreman, J. Vac. Sci. Technol. B 24, 2612 (2006).
[CrossRef]

2005 (1)

F. J. Gonzalez and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

2003 (1)

I. Codreanu, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 44, 155 (2003).
[CrossRef]

2000 (2)

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
[CrossRef]

1999 (1)

Alda, J.

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 7, 073093 (2013).
[CrossRef]

M. Silva-Lopez, A. Cuadrado, N. Llombart, and J. Alda, Opt. Express 21, 10867 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

C. Fumeaux, J. Alda, and G. Boreman, Opt. Lett. 24, 1629 (1999).
[CrossRef]

Bernstein, G. H.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, IEEE Trans. Nanotechnol. 12, 270 (2013).
[CrossRef]

Bharadwaj, P.

Boneberg, J.

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

Boreman, G.

P. Krenz, B. Lail, and G. Boreman, IEEE J. Sel. Top. Quantum Electron. 17, 218 (2011).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, J. Vac. Sci. Technol. B 24, 2612 (2006).
[CrossRef]

I. Codreanu, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 44, 155 (2003).
[CrossRef]

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
[CrossRef]

C. Fumeaux, J. Alda, and G. Boreman, Opt. Lett. 24, 1629 (1999).
[CrossRef]

Boreman, G. D.

F. J. Gonzalez and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

Chen, X.

X. Chen, Q. Lv, and X. Yi, Optik 122, 2143 (2011).
[CrossRef]

Codeluppi, S.

M. V. Diamanti, S. Codeluppi, A. Cordioli, and M. P. Pedeferri, J. Exp. Nanosci. 4, 365 (2009).
[CrossRef]

Codreanu, I.

I. Codreanu, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 44, 155 (2003).
[CrossRef]

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
[CrossRef]

Cordioli, A.

M. V. Diamanti, S. Codeluppi, A. Cordioli, and M. P. Pedeferri, J. Exp. Nanosci. 4, 365 (2009).
[CrossRef]

Cuadrado, A.

M. Silva-Lopez, A. Cuadrado, N. Llombart, and J. Alda, Opt. Express 21, 10867 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 7, 073093 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

Deutsch, B.

Diamanti, M. V.

M. V. Diamanti, S. Codeluppi, A. Cordioli, and M. P. Pedeferri, J. Exp. Nanosci. 4, 365 (2009).
[CrossRef]

Fay, P. J.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, IEEE Trans. Nanotechnol. 12, 270 (2013).
[CrossRef]

Fumeaux, C.

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
[CrossRef]

C. Fumeaux, J. Alda, and G. Boreman, Opt. Lett. 24, 1629 (1999).
[CrossRef]

Geldhauser, T.

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

Gonzalez, F.

I. Codreanu, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 44, 155 (2003).
[CrossRef]

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
[CrossRef]

Gonzalez, F. J.

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 7, 073093 (2013).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

F. J. Gonzalez and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

Gritz, M.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
[CrossRef]

Hubert, G.

S. Wei-Feng, G. Hubert, F. Yong-Liang, J. Zui-Min, and L. Yong-Kang, Chin. Phys. B 17, 3003 (2008).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Kolloch, A.

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

Krenz, P.

P. Krenz, B. Lail, and G. Boreman, IEEE J. Sel. Top. Quantum Electron. 17, 218 (2011).
[CrossRef]

Lail, B.

P. Krenz, B. Lail, and G. Boreman, IEEE J. Sel. Top. Quantum Electron. 17, 218 (2011).
[CrossRef]

T. Mandviwala, B. Lail, and G. Boreman, J. Vac. Sci. Technol. B 24, 2612 (2006).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Leiderer, P.

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

Llombart, N.

Lv, Q.

X. Chen, Q. Lv, and X. Yi, Optik 122, 2143 (2011).
[CrossRef]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Mandviwala, T.

T. Mandviwala, B. Lail, and G. Boreman, J. Vac. Sci. Technol. B 24, 2612 (2006).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Misawa, H.

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

Novotny, L.

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Orlov, A. O.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, IEEE Trans. Nanotechnol. 12, 270 (2013).
[CrossRef]

Pedeferri, M. P.

M. V. Diamanti, S. Codeluppi, A. Cordioli, and M. P. Pedeferri, J. Exp. Nanosci. 4, 365 (2009).
[CrossRef]

Plech, A.

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

Porod, W.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, IEEE Trans. Nanotechnol. 12, 270 (2013).
[CrossRef]

Schaich, W.

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
[CrossRef]

Silva-Lopez, M.

Sraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Tiwari, B. N.

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, IEEE Trans. Nanotechnol. 12, 270 (2013).
[CrossRef]

Ueno, K.

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Wei-Feng, S.

S. Wei-Feng, G. Hubert, F. Yong-Liang, J. Zui-Min, and L. Yong-Kang, Chin. Phys. B 17, 3003 (2008).
[CrossRef]

Yi, X.

X. Chen, Q. Lv, and X. Yi, Optik 122, 2143 (2011).
[CrossRef]

Yong-Kang, L.

S. Wei-Feng, G. Hubert, F. Yong-Liang, J. Zui-Min, and L. Yong-Kang, Chin. Phys. B 17, 3003 (2008).
[CrossRef]

Yong-Liang, F.

S. Wei-Feng, G. Hubert, F. Yong-Liang, J. Zui-Min, and L. Yong-Kang, Chin. Phys. B 17, 3003 (2008).
[CrossRef]

Zui-Min, J.

S. Wei-Feng, G. Hubert, F. Yong-Liang, J. Zui-Min, and L. Yong-Kang, Chin. Phys. B 17, 3003 (2008).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. A (1)

A. Kolloch, T. Geldhauser, K. Ueno, H. Misawa, J. Boneberg, A. Plech, and P. Leiderer, Appl. Phys. A 104, 793 (2011).
[CrossRef]

Chin. Phys. B (1)

S. Wei-Feng, G. Hubert, F. Yong-Liang, J. Zui-Min, and L. Yong-Kang, Chin. Phys. B 17, 3003 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Krenz, B. Lail, and G. Boreman, IEEE J. Sel. Top. Quantum Electron. 17, 218 (2011).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

B. N. Tiwari, P. J. Fay, G. H. Bernstein, A. O. Orlov, and W. Porod, IEEE Trans. Nanotechnol. 12, 270 (2013).
[CrossRef]

Infrared Phys. Technol. (3)

I. Codreanu, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 44, 155 (2003).
[CrossRef]

F. J. Gonzalez and G. D. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

C. Fumeaux, M. Gritz, I. Codreanu, W. Schaich, F. Gonzalez, and G. Boreman, Infrared Phys. Technol. 41, 271 (2000).
[CrossRef]

J. Exp. Nanosci. (1)

M. V. Diamanti, S. Codeluppi, A. Cordioli, and M. P. Pedeferri, J. Exp. Nanosci. 4, 365 (2009).
[CrossRef]

J. Nanophoton. (2)

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 6, 063512 (2012).
[CrossRef]

A. Cuadrado, J. Alda, and F. J. Gonzalez, J. Nanophoton. 7, 073093 (2013).
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. Mandviwala, B. Lail, and G. Boreman, J. Vac. Sci. Technol. B 24, 2612 (2006).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

F. J. Gonzalez, C. Fumeaux, J. Alda, and G. D. Boreman, Microw. Opt. Technol. Lett. 26, 291 (2000).
[CrossRef]

Nat. Photonics (2)

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, and D. A. B. Miller, Nat. Photonics 2, 226 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optik (1)

X. Chen, Q. Lv, and X. Yi, Optik 122, 2143 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured polarization dependence for a Ti bow-tie antenna. The maximum observed at 0° corresponds with linear polarization parallel to the bow-tie. Inset: diagram of the biasing circuit and SEM image of the device.

Fig. 2.
Fig. 2.

Current density through the bow-tie antenna. Units are A m2. (a) Induced current density caused by incident electromagnetic radiation. (b) Current density caused by biasing.

Fig. 3.
Fig. 3.

Maximum temperature reached by two types of antenna devices versus Vbias. The solid line corresponds to a distributed bolometer while the dashed line is obtained from the antenna having a Nb nanobolometer located at its feed point. Inset: temperature distribution along the (a) antenna-coupled distributed bolometer and (b) the antenna with nanobolometer when Vbias=11.2V.

Fig. 4.
Fig. 4.

SEM images of the antennas after the destructive tests. The device shown in (a) presents critical damages that open the circuit. Both devices, (a) and (b), show the effect of oxidation damage.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρCpTt=(kT)+Q,
Q=|J|2ρE(1+αΔT),
J=VρE(1+αΔT).

Metrics