Abstract

We propose a new wavelength-division-multiplexing method for extrinsic fiber Fabry–Perot interferometric (EFPI) sensing in a polarized low-coherence interferometer configuration. In the proposed method, multiple LED sources are used with different center wavelengths, and each LED is used by a specific sensing channel, and therefore the spatial frequency of the low-coherence interferogram of each channel can be separated. A bandpass filter is used to extract the low-coherence interferogram of each EFPI channel, and thus the cavity length of each EFPI channel can be identified through demultiplexing. We successfully demonstrate the simultaneous demodulation of EFPI sensors with same nominal cavity length while maintaining high measurement precision.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pevec and D. Donlagic, Opt. Express 19, 15641 (2011).
    [CrossRef]
  2. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, Opt. Lett. 36, 412 (2011).
    [CrossRef]
  3. O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
    [CrossRef]
  4. Y. Jiang, IEEE Photon. Technol. Lett. 20, 75 (2008).
    [CrossRef]
  5. T. Liu and G. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
    [CrossRef]
  6. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, Opt. Lett. 35, 619 (2010).
    [CrossRef]
  7. Y. Yuan, B. Wu, J. Yang, and L. Yuan, Opt. Lett. 35, 3357 (2010).
    [CrossRef]
  8. J. Jiang, T. Liu, Y. Zhang, L. Liu, Y. Zha, F. Zhang, Y. Wang, and P. Long, Opt. Lett. 30, 604 (2005).
    [CrossRef]
  9. C. Sun, Opt. Lett. 28, 1001 (2003).
    [CrossRef]
  10. R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
    [CrossRef]
  11. R. Dändliker, E. Zimmermann, and G. Frosio, Opt. Lett. 17, 679 (1992).
    [CrossRef]
  12. Y. J. Rao, C. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
    [CrossRef]
  13. J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, Opt. Express 20, 18117 (2012).
    [CrossRef]
  14. M. W. Kudenov and E. L. Dereniak, Opt. Express 20, 17973 (2012).
    [CrossRef]

2012

2011

2010

2009

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

2008

Y. Jiang, IEEE Photon. Technol. Lett. 20, 75 (2008).
[CrossRef]

2005

2003

2000

T. Liu and G. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

1996

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
[CrossRef]

1992

Aref, S. H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Baptista, J. M.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Dändliker, R.

Dereniak, E. L.

Dong, B.

Donlagic, D.

Farahi, F.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Fernando, G.

T. Liu and G. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Frazão, O.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Frosio, G.

Fu, H. Y.

Gong, J.

Grattan, K. T. V.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
[CrossRef]

Guan, B. O.

Han, M.

Jiang, J.

Jiang, X.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
[CrossRef]

Jiang, Y.

Y. Jiang, IEEE Photon. Technol. Lett. 20, 75 (2008).
[CrossRef]

Kobelke, J.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Kudenov, M. W.

Lally, E.

Latifi, H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Li, D.

Liu, K.

Liu, L.

Liu, T.

Long, P.

Marshall, R. H.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
[CrossRef]

Meggitt, B. T.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
[CrossRef]

Meng, X.

Ning, Y. N.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
[CrossRef]

Palmer, A. W.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
[CrossRef]

Pevec, S.

Qin, Z.

Qureshi, K. K.

Rao, Y. J.

Y. J. Rao, C. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

Santos, J. L.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Schuster, K.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Sun, C.

Tam, H. Y.

Wang, A.

Wang, J.

Wang, S.

Wang, Y.

Wu, B.

Wu, C.

Wu, F.

Yang, J.

Yin, J.

Yuan, L.

Yuan, Y.

Zha, Y.

Zhang, F.

Zhang, Y.

Zhou, C.

Y. J. Rao, C. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

Zhu, T.

Y. J. Rao, C. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

Zimmermann, E.

IEEE Photon. Technol. Lett.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, IEEE Photon. Technol. Lett. 21, 1229 (2009).
[CrossRef]

Y. Jiang, IEEE Photon. Technol. Lett. 20, 75 (2008).
[CrossRef]

Y. J. Rao, C. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

J. Lightw. Technol.

R. H. Marshall, Y. N. Ning, X. Jiang, A. W. Palmer, B. T. Meggitt, and K. T. V. Grattan, J. Lightw. Technol. 14, 397 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

T. Liu and G. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the EFPI multiplexing system.

Fig. 2.
Fig. 2.

(a) Spectrum of LED light sources for the proposed system. (b) A composite interferogram of three EFPI sensors with different cavity lengths. (c) Amplitude–frequency characteristic curve of the composite interferogram. (d) The interferograms corresponding to the sensor 1, sensor 2, and sensor 3 are extracted from the composite interferogram.

Fig. 3.
Fig. 3.

(a) Relationship between demodulated cavity length of three pressure sensors and set pressure using the proposed method. (b) Demodulation error of sensor 1. (c) Demodulation error of sensor 2. (d) Demodulation error of sensor 3.

Tables (1)

Tables Icon

Table 1. Measurement Error of the Proposed Method

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ICI(hFP,x)=k1k2IPI(k,x)·i=1N[Si(k)·IFPi(k,hFP)]dk,
ICI(hFP,x)=Ibg{1+12·i=1Nexp[(αΔi/lci)2]·cos(k0i·Δi)},
φ(Ωk,x)=Φ(Ωk,x)2π·floor(T/2π),
lci<12dΩ,

Metrics