Abstract

We propose a simple amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask (RAM). The RAM that is not saved during the encryption provides extremely high security for the two private keys, and no iterative calculations are involved in the nonlinear encryption process. Lack of enough constraints makes the specific attack based on iterative amplitude-phase retrieval algorithms unusable. Numerical simulation results are given for testing the validity and security of the proposed approach.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Refrégiér and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef]
  2. A. Alfalou and C. Brosseau, Adv. Opt. Photon. 1, 589 (2009).
    [CrossRef]
  3. G. Unnikrishnan, J. Joseph, and K. Singh, Opt. Lett. 25, 887 (2000).
    [CrossRef]
  4. G. Situ and J. Zhang, Opt. Lett. 29, 1584 (2004).
    [CrossRef]
  5. H. Hwang, H. Chang, and W. Lie, Opt. Lett. 34, 3917 (2009).
    [CrossRef]
  6. A. Alfalou and C. Brosseau, Opt. Lett. 35, 1914 (2010).
    [CrossRef]
  7. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, Opt. Lett. 30, 1644 (2005).
    [CrossRef]
  8. X. Peng, H. Wei, and P. Zhang, Opt. Lett. 31, 3261 (2006).
    [CrossRef]
  9. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, Opt. Express 14, 3181 (2006).
    [CrossRef]
  10. H. Chang and C. Chen, Opt. Commun. 239, 43 (2004).
    [CrossRef]
  11. W. Qin and X. Peng, Opt. Lett. 35, 118 (2010).
    [CrossRef]
  12. W. Chen and X. Chen, J. Opt. 13, 075404 (2011).
    [CrossRef]
  13. X. Wang and D. Zhao, Opt. Commun. 285, 1078 (2012).
    [CrossRef]
  14. W. Liu, Z. Liu, and S. Liu, Opt. Lett. 38, 1651 (2013).
    [CrossRef]

2013

2012

X. Wang and D. Zhao, Opt. Commun. 285, 1078 (2012).
[CrossRef]

2011

W. Chen and X. Chen, J. Opt. 13, 075404 (2011).
[CrossRef]

2010

2009

2006

2005

2004

G. Situ and J. Zhang, Opt. Lett. 29, 1584 (2004).
[CrossRef]

H. Chang and C. Chen, Opt. Commun. 239, 43 (2004).
[CrossRef]

2000

1995

Alfalou, A.

Arcos, S.

Brosseau, C.

Carnicer, A.

Chang, H.

Chen, C.

H. Chang and C. Chen, Opt. Commun. 239, 43 (2004).
[CrossRef]

Chen, W.

W. Chen and X. Chen, J. Opt. 13, 075404 (2011).
[CrossRef]

Chen, X.

W. Chen and X. Chen, J. Opt. 13, 075404 (2011).
[CrossRef]

Gopinathan, U.

Hwang, H.

Javidi, B.

Joseph, J.

Juvells, I.

Lie, W.

Liu, S.

Liu, W.

Liu, Z.

Monaghan, D. S.

Montes-Usategui, M.

Naughton, T. J.

Peng, X.

Qin, W.

Refrégiér, P.

Sheridan, J. T.

Singh, K.

Situ, G.

Unnikrishnan, G.

Wang, X.

X. Wang and D. Zhao, Opt. Commun. 285, 1078 (2012).
[CrossRef]

Wei, H.

Zhang, J.

Zhang, P.

Zhao, D.

X. Wang and D. Zhao, Opt. Commun. 285, 1078 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Flowchart of the proposed nonlinear encryption process.

Fig. 2.
Fig. 2.

Flowchart of the proposed linear decryption process.

Fig. 3.
Fig. 3.

Optical setup for decryption.

Fig. 4.
Fig. 4.

(a) Plaintext, (b) ciphertext, (c) K1, (d) K2, and (e) correct decrypted image with K1 and K2.

Fig. 5.
Fig. 5.

Relation between the iteration times and the MSE (a) in the first step and (b) in the second step.

Fig. 6.
Fig. 6.

Recovered image with the iterations of (a) m=1200, n=1; (b) m=1200, n=5; and (c) m=1200, n=100.

Fig. 7.
Fig. 7.

Decrypted result with (a) random phase keys, (b) public keys, (c) fake keys generated by plaintext “Cameraman,” and (d) POF filter.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C0=|IFT[|FT[IR1]|R2]|,
P1=PR{FT[IR1]},
P2=PR{IFT[|FT[IR1]|R2]},
D0=|IFT[|FT[C0P2]|P1]|.
P1f=PR{FT[AR1]},
P2f=PR{IFT[|FT[AR1]|R2]}.
Df=|IFT[|FT[C0P2f]|P1f]|.
C=|IFT[|FT[IP2f]|P1f]|,
K1=PR{FT[IP2f]}P1f*,
K2=PR{IFT[|FT[IP2f]|P1f]},
D=|IFT[FT[CK2]·K1]|.

Metrics