Abstract

Novel types of reflective spiral micro-electro-mechanical systems were used to generate few-cycle vortex pulses of variable topological charge from a Ti:sapphire laser oscillator. The phase profile of these components was controlled by varying the temperature. The temporal properties of the pulses were characterized with spatially resolved nonlinear autocorrelation. The beam structure resembles a slightly distorted Laguerre–Gaussian distribution. The different topological charges were indicated by detecting Poynting-vector maps with a programmable Shack–Hartmann sensor of enhanced angular sensitivity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum, (Institute of Physics, 2003).
  2. M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
    [CrossRef]
  3. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, Opt. Lett. 35, 3417 (2010).
    [CrossRef]
  4. S. Slussarenko, E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, J. Opt. Soc. Am. A 28, 61 (2011).
    [CrossRef]
  5. K. Crabtree, J. A. Davis, and I. Moreno, Appl. Opt. 43, 1360 (2004).
    [CrossRef]
  6. K. Yamane, Y. Toda, and R. Morita, Opt. Express 20, 18986 (2012).
    [CrossRef]
  7. M. Bock, J. Jahns, and R. Grunwald, Opt. Lett. 37, 3804 (2012).
    [CrossRef]
  8. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
    [CrossRef]
  9. M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, in International Symposium on Optomechatronic Technologies ISOT (IEEE, 2012).
  10. J. Brunne and U. Wallrabe, Opt. Lett. 38, 1939 (2013).
    [CrossRef]
  11. M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Börner, and R. Grunwald, Opt. Lett. 37, 1154 (2012).
    [CrossRef]
  12. L. Allen and M. Padgett, in Twisted Photons: Applications of Light with Orbital Angular Momentum, J. P. Torres and L. Toner, eds. (Wiley-VCH, 2011).

2013 (1)

2012 (3)

2011 (2)

2010 (1)

2004 (1)

1997 (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Allen, L.

L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum, (Institute of Physics, 2003).

L. Allen and M. Padgett, in Twisted Photons: Applications of Light with Orbital Angular Momentum, J. P. Torres and L. Toner, eds. (Wiley-VCH, 2011).

Barnett, S. M.

L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum, (Institute of Physics, 2003).

Bock, M.

Börner, P.

Bowman, R.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Brunne, J.

J. Brunne and U. Wallrabe, Opt. Lett. 38, 1939 (2013).
[CrossRef]

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, in International Symposium on Optomechatronic Technologies ISOT (IEEE, 2012).

Crabtree, K.

Das, S. K.

Davis, J. A.

Diehl, M.

Fischer, C.

Gorshkov, V. N.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Grunwald, R.

M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Börner, and R. Grunwald, Opt. Lett. 37, 1154 (2012).
[CrossRef]

M. Bock, J. Jahns, and R. Grunwald, Opt. Lett. 37, 3804 (2012).
[CrossRef]

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, in International Symposium on Optomechatronic Technologies ISOT (IEEE, 2012).

Heckenberg, N. R.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Hnatovsky, C.

Jahns, J.

Karimi, E.

Krolikowski, W.

Malos, J. T.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Marrucci, L.

Moreno, I.

Morita, R.

Padgett, M.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum, (Institute of Physics, 2003).

L. Allen and M. Padgett, in Twisted Photons: Applications of Light with Orbital Angular Momentum, J. P. Torres and L. Toner, eds. (Wiley-VCH, 2011).

Pauls, M.

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, in International Symposium on Optomechatronic Technologies ISOT (IEEE, 2012).

Piccirillo, B.

Rode, A. V.

Santamato, E.

Shvedov, V. G.

Slussarenko, S.

Soskin, M. S.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Toda, Y.

Vasnetsov, M. V.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Wallrabe, U.

J. Brunne and U. Wallrabe, Opt. Lett. 38, 1939 (2013).
[CrossRef]

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, in International Symposium on Optomechatronic Technologies ISOT (IEEE, 2012).

Yamane, K.

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).
[CrossRef]

Other (3)

M. Pauls, J. Brunne, U. Wallrabe, and R. Grunwald, in International Symposium on Optomechatronic Technologies ISOT (IEEE, 2012).

L. Allen and M. Padgett, in Twisted Photons: Applications of Light with Orbital Angular Momentum, J. P. Torres and L. Toner, eds. (Wiley-VCH, 2011).

L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum, (Institute of Physics, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Two selected phase maps of a thermally tunable reflective spiral MEMS for the generation of few-cycle vortex pulses. The corresponding temperature values are (a) 26°C and (b) 44°C. The phase was measured with a white light interferometer (LOT-Zygo). The height h is represented by the color code [diameter of the spiral, 3 mm; dashed blue line, cut, see Fig. 2(c)].

Fig. 2.
Fig. 2.

Spatial shape and temperature dependence of the spiral MEMS: (a) radial cuts as a function of the azimuthal angle for a fixed temperature of T=26°C (h=height, r=radius), (b) temperature-dependent maximum spiral height hmax measured near the rim (blue squares, interferometrically measured data; dashed line, linear extrapolation), and (c) perpendicular cut through the maximum of the wrapping line of the spiral MEMS at T=26°C [corresponding to the dashed blue line in Fig. 1(a)].

Fig. 3.
Fig. 3.

Tunability of the few-cycle vortex beams: (a) measured light distributions recorded at a distance of z=750cm at an incident angle of 20° (I=intensity) and (yellow) azimuthally averaged beam profiles indicating topological charges of 7, 5, 3, and 1 (from left to right) and (b) beam distribution as a function of temperature (averaged cuts, r=radius). Because of the averaging, the oscillations are suppressed. The allocation of the different to the curves results from theoretical simulations and was verified by wavefront sensing (as shown in Fig. 4).

Fig. 4.
Fig. 4.

Characterization of the vortex structure by wavefront measurements of high angular resolution with a modified Shack–Hartmann sensor working with programmable needle beams (distance between MEMS and SLM z=800mm; distance between SLM and the focal plane to be analyzed for the wavefront reconstruction, 40 mm; incident beam angle on the MEMS, 6°; logarithmic intensity scale). The topological charges in the left and right image were =3 and =5, respectively.

Fig. 5.
Fig. 5.

Spatiotemporal characteristics of a vortex beam with the topological charge =4: (a) time-integrated propagation, (b) spatially resolved second-order autocorrelation traces at various distances (cut through the ring structure), and (c) spatially integrated second-order autocorrelation at distances of z1=350mm, z2=620mm, and z3=750mm (Δt=timedelay). Over this range, the pulse duration is nearly constant.

Fig. 6.
Fig. 6.

Comparison of the OAM shaping performance of an SLM and a spiral MEMS for two different topological charges: (a) intensity patterns of few-cycle vortices of =1 and =4 at distances of 900 and 750 mm, respectively (high spatial frequencies filtered out). The pattern for =4 created with the SLM has 4 pronounced minima and (b) phase maps for the vortex generation with =4. The higher maximum phase stroke of the MEMS enables us to work with continuous profiles, whereas the phase map of the SLM has to be divided in 4 zones at =4 (SLM: LCoS-type Pluto, 1920×1080pixels, 8 μm pixel size, 8.2 μm pitch, HoloEye Photonics AG, Berlin, Germany). The fields of view are about 2mm×2mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ=/(k·r).

Metrics