Abstract

Diffraction-limited cylindrically polarized multifocal arrays are created in the focal region of a high numerical-aperture objective for multiphoton microscopy by applying the dynamic phase modulation on an incident light beam. We show that this kind of cylindrical-polarization multifocal multiphoton microscopy exhibits a parallel imaging capacity but also a dynamic switching-on or -off feature of individual focal spots. The parallel multiphoton microscopy results of the polarization-sensitive gold nanorods under the illumination of radially or azimuthally polarized multifocal arrays allow for the fast determination of the orientation of nanorods.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef]
  2. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef]
  3. X. Li, Y. Cao, and M. Gu, Opt. Lett. 36, 2510 (2011).
    [CrossRef]
  4. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).
  5. B. Jia, H. Kang, J. Li, and M. Gu, Opt. Lett. 34, 1918 (2009).
    [CrossRef]
  6. H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, Appl. Phys. Lett. 96, 065702 (2010).
  7. M. Zimmerley, P. Mahou, D. Débarre, M. C. Schanne-Klein, and E. Beaurepaire, Phys. Rev. X 3, 011002 (2013).
  8. X. Li, T. Lan, C. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).
  9. J. Bewersdorf, R. Pick, and S. W. Hell, Opt. Lett. 23, 655 (1998).
    [CrossRef]
  10. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, J. Microsc. 201, 368 (2001).
    [CrossRef]
  11. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, Opt. Express 7, 273 (2000).
    [CrossRef]
  12. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, Opt. Lett. 28, 1918 (2003).
    [CrossRef]
  13. A. Jesacher and M. J. Booth, Opt. Express 18, 21090 (2010).
    [CrossRef]
  14. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, Opt. Express 19, 9419 (2011).
    [CrossRef]
  15. H. Lin, B. Jia, and M. Gu, Opt. Lett. 36, 406 (2011).
    [CrossRef]
  16. H. Lin and M. Gu, Appl. Phys. Lett. 102, 084103 (2013).
    [CrossRef]
  17. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  18. http://www.arcoptix.com/radial_polarization_converter.htm .
  19. B. M. I. van der Zande, L. Pagès, R. A. M. Hikmet, and A. van Blaaderen, J. Phys. Chem. B 103, 5761 (1999).
    [CrossRef]
  20. P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
    [CrossRef]
  21. W. Yan, M. Hossain, and M. Gu, Opt. Lett. 38, 3177 (2013).
    [CrossRef]
  22. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

2013

M. Zimmerley, P. Mahou, D. Débarre, M. C. Schanne-Klein, and E. Beaurepaire, Phys. Rev. X 3, 011002 (2013).

H. Lin and M. Gu, Appl. Phys. Lett. 102, 084103 (2013).
[CrossRef]

W. Yan, M. Hossain, and M. Gu, Opt. Lett. 38, 3177 (2013).
[CrossRef]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

2012

X. Li, T. Lan, C. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).

2011

2010

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, Appl. Phys. Lett. 96, 065702 (2010).

A. Jesacher and M. J. Booth, Opt. Express 18, 21090 (2010).
[CrossRef]

2009

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).

B. Jia, H. Kang, J. Li, and M. Gu, Opt. Lett. 34, 1918 (2009).
[CrossRef]

2004

2003

2001

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, J. Microsc. 201, 368 (2001).
[CrossRef]

2000

1999

B. M. I. van der Zande, L. Pagès, R. A. M. Hikmet, and A. van Blaaderen, J. Phys. Chem. B 103, 5761 (1999).
[CrossRef]

1998

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).

Andresen, P.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, J. Microsc. 201, 368 (2001).
[CrossRef]

Antolini, R.

Beaurepaire, E.

M. Zimmerley, P. Mahou, D. Débarre, M. C. Schanne-Klein, and E. Beaurepaire, Phys. Rev. X 3, 011002 (2013).

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Bewersdorf, J.

Booth, M. J.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

X. Li, Y. Cao, and M. Gu, Opt. Lett. 36, 2510 (2011).
[CrossRef]

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

Choudhury, A.

Cumming, B. P.

Débarre, D.

M. Zimmerley, P. Mahou, D. Débarre, M. C. Schanne-Klein, and E. Beaurepaire, Phys. Rev. X 3, 011002 (2013).

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

Fittinghoff, D. N.

Fricke, M.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, J. Microsc. 201, 368 (2001).
[CrossRef]

Froner, E.

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

Gu, M.

W. Yan, M. Hossain, and M. Gu, Opt. Lett. 38, 3177 (2013).
[CrossRef]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

H. Lin and M. Gu, Appl. Phys. Lett. 102, 084103 (2013).
[CrossRef]

X. Li, T. Lan, C. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, Opt. Express 19, 9419 (2011).
[CrossRef]

H. Lin, B. Jia, and M. Gu, Opt. Lett. 36, 406 (2011).
[CrossRef]

X. Li, Y. Cao, and M. Gu, Opt. Lett. 36, 2510 (2011).
[CrossRef]

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, Appl. Phys. Lett. 96, 065702 (2010).

B. Jia, H. Kang, J. Li, and M. Gu, Opt. Lett. 34, 1918 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

Hell, S. W.

Hellweg, D.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, J. Microsc. 201, 368 (2001).
[CrossRef]

Hikmet, R. A. M.

B. M. I. van der Zande, L. Pagès, R. A. M. Hikmet, and A. van Blaaderen, J. Phys. Chem. B 103, 5761 (1999).
[CrossRef]

Hossain, M.

Jesacher, A.

Jia, B.

Kang, H.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, Appl. Phys. Lett. 96, 065702 (2010).

B. Jia, H. Kang, J. Li, and M. Gu, Opt. Lett. 34, 1918 (2009).
[CrossRef]

Lan, T.

X. Li, T. Lan, C. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).

Li, J.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, Appl. Phys. Lett. 96, 065702 (2010).

B. Jia, H. Kang, J. Li, and M. Gu, Opt. Lett. 34, 1918 (2009).
[CrossRef]

Li, X.

X. Li, T. Lan, C. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).

X. Li, Y. Cao, and M. Gu, Opt. Lett. 36, 2510 (2011).
[CrossRef]

Lin, H.

H. Lin and M. Gu, Appl. Phys. Lett. 102, 084103 (2013).
[CrossRef]

H. Lin, B. Jia, and M. Gu, Opt. Lett. 36, 406 (2011).
[CrossRef]

Mahou, P.

M. Zimmerley, P. Mahou, D. Débarre, M. C. Schanne-Klein, and E. Beaurepaire, Phys. Rev. X 3, 011002 (2013).

Morrish, D.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, Appl. Phys. Lett. 96, 065702 (2010).

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).

Nielsen, T.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, J. Microsc. 201, 368 (2001).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Pagès, L.

B. M. I. van der Zande, L. Pagès, R. A. M. Hikmet, and A. van Blaaderen, J. Phys. Chem. B 103, 5761 (1999).
[CrossRef]

Pavone, F. S.

Pick, R.

Sacconi, L.

Schanne-Klein, M. C.

M. Zimmerley, P. Mahou, D. Débarre, M. C. Schanne-Klein, and E. Beaurepaire, Phys. Rev. X 3, 011002 (2013).

Squier, J. A.

Taghizadeh, M. R.

Tien, C.

X. Li, T. Lan, C. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).

van Blaaderen, A.

B. M. I. van der Zande, L. Pagès, R. A. M. Hikmet, and A. van Blaaderen, J. Phys. Chem. B 103, 5761 (1999).
[CrossRef]

van der Zande, B. M. I.

B. M. I. van der Zande, L. Pagès, R. A. M. Hikmet, and A. van Blaaderen, J. Phys. Chem. B 103, 5761 (1999).
[CrossRef]

Wilson, T.

Wiseman, P. W.

Yan, W.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).

Q. Zhan, Opt. Express 12, 3377 (2004).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

Zimmerley, M.

M. Zimmerley, P. Mahou, D. Débarre, M. C. Schanne-Klein, and E. Beaurepaire, Phys. Rev. X 3, 011002 (2013).

Appl. Phys. Lett.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, Appl. Phys. Lett. 96, 065702 (2010).

H. Lin and M. Gu, Appl. Phys. Lett. 102, 084103 (2013).
[CrossRef]

J. Microsc.

T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, J. Microsc. 201, 368 (2001).
[CrossRef]

J. Phys. Chem. B

B. M. I. van der Zande, L. Pagès, R. A. M. Hikmet, and A. van Blaaderen, J. Phys. Chem. B 103, 5761 (1999).
[CrossRef]

Nano Lett.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, Nano Lett. 9, 4320 (2009).

Nat. Commun.

X. Li, T. Lan, C. Tien, and M. Gu, Nat. Commun. 3, 998 (2012).

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

Nature

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Phys. Rev. X

M. Zimmerley, P. Mahou, D. Débarre, M. C. Schanne-Klein, and E. Beaurepaire, Phys. Rev. X 3, 011002 (2013).

Other

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

http://www.arcoptix.com/radial_polarization_converter.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup for PMM using an SLM. L, lenses; M, mirrors; PC, polarization converter; HPSF, high-pass spatial filter; BS, beam splitter cube; SPF, short-pass filter; O, objective lens (1.4 NA, 100×); S, sample; SS, scanning stage. (b)–(d) Generated phase modulation function for a 2×2 radially polarized multifocal array, the corresponding intensity distribution in the focal region, and the PMM image of fluorescence microspheres. (e)–(g) Generated phase modulation function for a 2×2 azimuthally polarized multifocal array, the corresponding intensity distribution in the focal region, and the PMM image of fluorescence microspheres. Insets: enlarged images of one of the focal spots in the radially and azimuthally polarized multifocal arrays (marked using white squares). Scale bar: 10 μm.

Fig. 2.
Fig. 2.

(a), (d), and (g) Phase modulation functions for a radially polarized multifocal array with one or two focal spots being switched off. (b), (e), and (h) Schematics of the focusing geometry corresponding to the phase modulation functions. (c), (f), and (i) Corresponding PMM images by using the multifocal arrays.

Fig. 3.
Fig. 3.

(a) PMM images of gold nanorods by using a 2×2 radially polarized multifocal array. (b)–(e) Enlarged images of a single gold nanorod in different quadrants. (f) Enlarged single gold nanorod image scanned by using a single radially polarized focus without phase modulation. (g) Simulated image according to the situation demonstrated in the inset of (a). The white arrows mark the local minimum lines between two lobes. The yellow arrows mark the orientation of the single gold nanorod.

Fig. 4.
Fig. 4.

(a) PMM images of gold nanorods by using a 2×2 azimuthally polarized multifocal array. (b)–(e) Enlarged images of a single gold nanorod in different quadrants. (f) Enlarged single gold nanorod image scanned by using a single azimuthally polarized focus without phase modulation. (g) Simulation image according to the situation demonstrated in the inset of (a). The arrows mark the local minimum lines between two lobes. The yellow arrows mark the orientation of the single gold nanorod.

Metrics