Abstract

Optimization of the compression of input N-solitons into robust ultra-narrow fundamental solitons, with a tunable up- or downshifted frequency, is proposed in photonic crystal fibers free of the Raman effect. Due to the absence of the Raman self-frequency shift, these fundamental solitons continue propagation, maintaining the acquired frequency, once separated from the input N soliton’s temporal slot. A universal optimal value of the relative strength of the third-order dispersion is found, providing the strongest compression of the fundamental soliton is found. It depends only on the order of the injected N-soliton. The largest compression degree significantly exceeds the analytical prediction supplied by the Satsuma–Yajima formula. The mechanism behind this effect, which remains valid in the presence of the self-steepening, is explained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription