Abstract

We investigate a tunable fluidic dye laser formed by a microcavity filled with a dye solution. We achieve a wide 18 nm tunability of the laser wavelength by controlling the cavity length for the first time. The microcavity is made of a silica capillary and two aligned fibers with end faces Au-coated. The Rhodamine 6G dye solution flowing through the microcavity is pumped by 532 nm wavelength laser pulses. Laser emission around 570 nm in the form of TE mode with a threshold of about 58μJ/pulse is obtained. This work suggests a fiber-based convenient approach to achieve wavelength tunability and integration with lab-on-a-chip systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
    [CrossRef]
  2. G. M. Whitesides, Nature 442, 368 (2006).
    [CrossRef]
  3. Z. Li and D. Psaltis, Microfluid. Nanofluid. 4, 145 (2008).
  4. U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).
  5. “Fluidic vision,” Nat. Photonics5, 567 (2011).
    [CrossRef]
  6. S. K. Y. Tang, R. Derda, Q. Quan, M. Lončar, and G. M. Whitesides, Opt. Express 19, 2204 (2011).
    [CrossRef]
  7. S. M. Iftiquar, J. Opt. 41, 110 (2012).
    [CrossRef]
  8. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, Appl. Phys. Lett. 90, 233501 (2007).
    [CrossRef]
  9. Y. Sun, J. D. Suter, and X. Fan, Opt. Lett. 34, 1042 (2009).
    [CrossRef]
  10. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, Opt. Express 14, 696 (2006).
    [CrossRef]
  11. M. Gersborg-Hansen and A. Kristensen, Opt. Express 15, 137 (2007).
    [CrossRef]
  12. I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, Opt. Express 21, 004319 (2013).
    [CrossRef]
  13. B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
    [CrossRef]
  14. Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
    [CrossRef]
  15. W. Z. Song, X. M. Zhang, A. Q. Liu, and C. S. Lim, Appl. Phys. Lett. 89, 203901 (2006).
    [CrossRef]
  16. W. Songa and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
    [CrossRef]
  17. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
    [CrossRef]
  18. H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
    [CrossRef]
  19. B. Bilenberg, B. Helbo, J. P. Kutter, and A. Kristensen, in Proceedings of the 12th International Conference on Transducers, Solid-State Sensors, Actuators, and Microsystems (IEEE, 2003).
  20. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, Opt. Express 15, 3962 (2007).
    [CrossRef]
  21. J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, Appl. Phys. B 64, 387 (1997).
    [CrossRef]
  22. C. V. Shank, Rev. Mod. Phys. 47, 649 (1975).
    [CrossRef]
  23. S. A. Ahmed, Z. W. Zang, K. M. Yoo, M. A. Ali, and R. R. Alfano, Appl. Opt. 33, 2746 (1994).
    [CrossRef]
  24. S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
    [CrossRef]
  25. W. Koechner, Solid-State Laser Engineering (Springer, 2006).

2013 (1)

I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, Opt. Express 21, 004319 (2013).
[CrossRef]

2012 (1)

S. M. Iftiquar, J. Opt. 41, 110 (2012).
[CrossRef]

2011 (1)

2010 (1)

W. Songa and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

2009 (2)

Y. Sun, J. D. Suter, and X. Fan, Opt. Lett. 34, 1042 (2009).
[CrossRef]

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
[CrossRef]

2008 (2)

Z. Li and D. Psaltis, Microfluid. Nanofluid. 4, 145 (2008).

U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).

2007 (3)

2006 (5)

Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

W. Z. Song, X. M. Zhang, A. Q. Liu, and C. S. Lim, Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, Opt. Express 14, 696 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

G. M. Whitesides, Nature 442, 368 (2006).
[CrossRef]

2005 (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

2003 (1)

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

1997 (1)

J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, Appl. Phys. B 64, 387 (1997).
[CrossRef]

1994 (1)

1991 (1)

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

1975 (1)

C. V. Shank, Rev. Mod. Phys. 47, 649 (1975).
[CrossRef]

Ahmed, S. A.

Alfano, R. R.

Ali, M. A.

Bawendi, M. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

Bilenberg, B.

B. Bilenberg, B. Helbo, J. P. Kutter, and A. Kristensen, in Proceedings of the 12th International Conference on Transducers, Solid-State Sensors, Actuators, and Microsystems (IEEE, 2003).

Chan, Y.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

Chen, Y.

Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Conroy, R. S.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

Derda, R.

Emery, T.

Fan, S.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
[CrossRef]

Fan, X.

Fu, J.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Gersborg-Hansen, M.

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

B. Bilenberg, B. Helbo, J. P. Kutter, and A. Kristensen, in Proceedings of the 12th International Conference on Transducers, Solid-State Sensors, Actuators, and Microsystems (IEEE, 2003).

Hohlfeld, J.

J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, Appl. Phys. B 64, 387 (1997).
[CrossRef]

Hong, K. L.

I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, Opt. Express 21, 004319 (2013).
[CrossRef]

Iftiquar, S. M.

S. M. Iftiquar, J. Opt. 41, 110 (2012).
[CrossRef]

Jiang, X.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Khoo, I. C.

I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, Opt. Express 21, 004319 (2013).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Kou, Q.

Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Kristensen, A.

M. Gersborg-Hansen and A. Kristensen, Opt. Express 15, 137 (2007).
[CrossRef]

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

B. Bilenberg, B. Helbo, J. P. Kutter, and A. Kristensen, in Proceedings of the 12th International Conference on Transducers, Solid-State Sensors, Actuators, and Microsystems (IEEE, 2003).

Kutter, J. P.

B. Bilenberg, B. Helbo, J. P. Kutter, and A. Kristensen, in Proceedings of the 12th International Conference on Transducers, Solid-State Sensors, Actuators, and Microsystems (IEEE, 2003).

Lan, R.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
[CrossRef]

Levy, U.

U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).

Li, Z.

Lim, C. S.

W. Z. Song, X. M. Zhang, A. Q. Liu, and C. S. Lim, Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Lin, T.-H.

I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, Opt. Express 21, 004319 (2013).
[CrossRef]

Liu, A. Q.

W. Z. Song, X. M. Zhang, A. Q. Liu, and C. S. Lim, Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Loncar, M.

Ma, D.

I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, Opt. Express 21, 004319 (2013).
[CrossRef]

Matthias, E.

J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, Appl. Phys. B 64, 387 (1997).
[CrossRef]

Mayers, B. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

Müller, J. G.

J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, Appl. Phys. B 64, 387 (1997).
[CrossRef]

Nambu, Y.

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

Nocera, D. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

Psaltis, D.

W. Songa and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

Z. Li and D. Psaltis, Microfluid. Nanofluid. 4, 145 (2008).

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, Opt. Express 14, 696 (2006).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Quan, Q.

Samuel, I. D. W.

Scherer, A.

Shamai, R.

U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).

Shank, C. V.

C. V. Shank, Rev. Mod. Phys. 47, 649 (1975).
[CrossRef]

Snee, P. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

Song, Q.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Song, W. Z.

W. Z. Song, X. M. Zhang, A. Q. Liu, and C. S. Lim, Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Songa, W.

W. Songa and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

Sun, Y.

Suter, J. D.

Suzuki, M.

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

Tang, S. K. Y.

Tong, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Town, G. E.

Turnbull, G. A.

Vasdekis, A. E.

Vezenov, D. V.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

Wang, Q.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
[CrossRef]

Wang, Z.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
[CrossRef]

Wellershoff, S.-S.

J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, Appl. Phys. B 64, 387 (1997).
[CrossRef]

Whitesides, G. M.

S. K. Y. Tang, R. Derda, Q. Quan, M. Lončar, and G. M. Whitesides, Opt. Express 19, 2204 (2011).
[CrossRef]

G. M. Whitesides, Nature 442, 368 (2006).
[CrossRef]

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

Xu, L.

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Yesilyurt, I.

Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Yokoyama, H.

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

Yoo, K. M.

Zang, Z. W.

Zhang, C.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
[CrossRef]

Zhang, X.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
[CrossRef]

Zhang, X. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, and C. S. Lim, Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Zhang, Z.

Zhao, S.

I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, Opt. Express 21, 004319 (2013).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Hohlfeld, J. G. Müller, S.-S. Wellershoff, and E. Matthias, Appl. Phys. B 64, 387 (1997).
[CrossRef]

Appl. Phys. Lett. (5)

X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, Appl. Phys. Lett. 90, 233501 (2007).
[CrossRef]

Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

W. Z. Song, X. M. Zhang, A. Q. Liu, and C. S. Lim, Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

W. Songa and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

J. Am. Chem. Soc. (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, J. Am. Chem. Soc. 127, 8952 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

J. Opt. (1)

S. M. Iftiquar, J. Opt. 41, 110 (2012).
[CrossRef]

J. Phys. D (1)

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, J. Phys. D 42, 015105 (2009).
[CrossRef]

Microfluid. Nanofluid. (2)

Z. Li and D. Psaltis, Microfluid. Nanofluid. 4, 145 (2008).

U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).

Nature (2)

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

G. M. Whitesides, Nature 442, 368 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Rev. Mod. Phys. (1)

C. V. Shank, Rev. Mod. Phys. 47, 649 (1975).
[CrossRef]

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

“Fluidic vision,” Nat. Photonics5, 567 (2011).
[CrossRef]

B. Bilenberg, B. Helbo, J. P. Kutter, and A. Kristensen, in Proceedings of the 12th International Conference on Transducers, Solid-State Sensors, Actuators, and Microsystems (IEEE, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experiment setup and the schematic diagram of the structure of the microcavity fluidic dye laser. The insert image is the optical microscope image of the capillary and microcavity filled with Rh6G solution and illuminated by a low power 532 nm wavelength laser, clear yellow fluorescence can be seen.

Fig. 2.
Fig. 2.

Integrated emission intensity of the dye laser versus pump energy. The red circles indicate the laser action. The lasing threshold estimated is about 58μJ/pulse. The insert figure shows the fluorescence spectrum of the dye solution (red curve) and the spectrum of the laser emission (black curve), and the output pattern of the laser system.

Fig. 3.
Fig. 3.

(a) Experimental results of absorption curve (green) and fluorescence curve (red) of Rh6G dye solution and their fitted lines. (b) The experimental and simulated results of the tuned wavelength when adjusting the cavity length from 3 to 20 mm. (c) Four selected spectrums of the output lasers, from left to right are 564 nm (green curve), 569 nm (blue curve), 574 nm (red curve), 581 nm (black curve). The laser peak at the wavelength of 532 nm is the scattering light of the pump pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(λ,L)=I0(λ)·exp{[g(λ,I)α(λ)]·L},
g(λ)=g0(λ)·[1/(1+I/Is)],
R1R2exp(gα)2l=1,
I(λ,L)=I0(λ)exp{[g0(λ)/(1+I/Is)α(λ)]2l}R1R2=I0(λ).

Metrics