Abstract

A roll-angle interferometer with high sensitivity is presented in this Letter. Two sets of centrosymmetric beams are used to travel through the measurement and reference arms of the roll-angle interferometer, which contains two specific optical devices: wedge prism assembly and wedge mirror assembly. Changes of the optical path in the interferometric arms caused by roll are differential and converted into phase shift through a particular interferometer system. The interferometric beams are a completely common path for the adoption of the centrosymmetric measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The dead path is minimized, so the stability and the accuracy of the measurement can be greatly enhanced. The experimental results fit well with the theoretical analysis, and a measurement resolution of sub-microradian is achieved experimentally.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Yin, G. Xie, and X. Cheng, J. Tshinghua Univ. (Sci. Tech.) 36, 86 (1996).
  2. H. Jiang and C. Yin, Opt. Eng. 39, 516 (2000).
    [CrossRef]
  3. Z. Liu, D. Lin, H. Jiang, and C. Yin, Sens. Actuators A 104, 127 (2003).
    [CrossRef]
  4. C. Wu and Y. Chuang, Sens. Actuators A 116, 145 (2004).
    [CrossRef]
  5. L. Chen, E. Zhang, H. Guo, L. Sun, and Q. Tian, J. Opt. Laser 14, 625 (2003).
  6. C. Kuang and Q. Feng, J. Opt. Laser 17, 478 (2006).
  7. S. Li, C. Yang, E. Zhang, and G. Jin, Opt. Lett. 30, 242 (2005).
    [CrossRef]
  8. Y. Zhai, Q. Feng, and B. Zhang, Opt. Laser Technol. 44, 839 (2012).
    [CrossRef]
  9. W. Hou, Precis. Eng. 30, 337 (2006).
    [CrossRef]

2012 (1)

Y. Zhai, Q. Feng, and B. Zhang, Opt. Laser Technol. 44, 839 (2012).
[CrossRef]

2006 (2)

W. Hou, Precis. Eng. 30, 337 (2006).
[CrossRef]

C. Kuang and Q. Feng, J. Opt. Laser 17, 478 (2006).

2005 (1)

2004 (1)

C. Wu and Y. Chuang, Sens. Actuators A 116, 145 (2004).
[CrossRef]

2003 (2)

L. Chen, E. Zhang, H. Guo, L. Sun, and Q. Tian, J. Opt. Laser 14, 625 (2003).

Z. Liu, D. Lin, H. Jiang, and C. Yin, Sens. Actuators A 104, 127 (2003).
[CrossRef]

2000 (1)

H. Jiang and C. Yin, Opt. Eng. 39, 516 (2000).
[CrossRef]

1996 (1)

C. Yin, G. Xie, and X. Cheng, J. Tshinghua Univ. (Sci. Tech.) 36, 86 (1996).

Chen, L.

L. Chen, E. Zhang, H. Guo, L. Sun, and Q. Tian, J. Opt. Laser 14, 625 (2003).

Cheng, X.

C. Yin, G. Xie, and X. Cheng, J. Tshinghua Univ. (Sci. Tech.) 36, 86 (1996).

Chuang, Y.

C. Wu and Y. Chuang, Sens. Actuators A 116, 145 (2004).
[CrossRef]

Feng, Q.

Y. Zhai, Q. Feng, and B. Zhang, Opt. Laser Technol. 44, 839 (2012).
[CrossRef]

C. Kuang and Q. Feng, J. Opt. Laser 17, 478 (2006).

Guo, H.

L. Chen, E. Zhang, H. Guo, L. Sun, and Q. Tian, J. Opt. Laser 14, 625 (2003).

Hou, W.

W. Hou, Precis. Eng. 30, 337 (2006).
[CrossRef]

Jiang, H.

Z. Liu, D. Lin, H. Jiang, and C. Yin, Sens. Actuators A 104, 127 (2003).
[CrossRef]

H. Jiang and C. Yin, Opt. Eng. 39, 516 (2000).
[CrossRef]

Jin, G.

Kuang, C.

C. Kuang and Q. Feng, J. Opt. Laser 17, 478 (2006).

Li, S.

Lin, D.

Z. Liu, D. Lin, H. Jiang, and C. Yin, Sens. Actuators A 104, 127 (2003).
[CrossRef]

Liu, Z.

Z. Liu, D. Lin, H. Jiang, and C. Yin, Sens. Actuators A 104, 127 (2003).
[CrossRef]

Sun, L.

L. Chen, E. Zhang, H. Guo, L. Sun, and Q. Tian, J. Opt. Laser 14, 625 (2003).

Tian, Q.

L. Chen, E. Zhang, H. Guo, L. Sun, and Q. Tian, J. Opt. Laser 14, 625 (2003).

Wu, C.

C. Wu and Y. Chuang, Sens. Actuators A 116, 145 (2004).
[CrossRef]

Xie, G.

C. Yin, G. Xie, and X. Cheng, J. Tshinghua Univ. (Sci. Tech.) 36, 86 (1996).

Yang, C.

Yin, C.

Z. Liu, D. Lin, H. Jiang, and C. Yin, Sens. Actuators A 104, 127 (2003).
[CrossRef]

H. Jiang and C. Yin, Opt. Eng. 39, 516 (2000).
[CrossRef]

C. Yin, G. Xie, and X. Cheng, J. Tshinghua Univ. (Sci. Tech.) 36, 86 (1996).

Zhai, Y.

Y. Zhai, Q. Feng, and B. Zhang, Opt. Laser Technol. 44, 839 (2012).
[CrossRef]

Zhang, B.

Y. Zhai, Q. Feng, and B. Zhang, Opt. Laser Technol. 44, 839 (2012).
[CrossRef]

Zhang, E.

S. Li, C. Yang, E. Zhang, and G. Jin, Opt. Lett. 30, 242 (2005).
[CrossRef]

L. Chen, E. Zhang, H. Guo, L. Sun, and Q. Tian, J. Opt. Laser 14, 625 (2003).

J. Opt. Laser (2)

L. Chen, E. Zhang, H. Guo, L. Sun, and Q. Tian, J. Opt. Laser 14, 625 (2003).

C. Kuang and Q. Feng, J. Opt. Laser 17, 478 (2006).

J. Tshinghua Univ. (Sci. Tech.) (1)

C. Yin, G. Xie, and X. Cheng, J. Tshinghua Univ. (Sci. Tech.) 36, 86 (1996).

Opt. Eng. (1)

H. Jiang and C. Yin, Opt. Eng. 39, 516 (2000).
[CrossRef]

Opt. Laser Technol. (1)

Y. Zhai, Q. Feng, and B. Zhang, Opt. Laser Technol. 44, 839 (2012).
[CrossRef]

Opt. Lett. (1)

Precis. Eng. (1)

W. Hou, Precis. Eng. 30, 337 (2006).
[CrossRef]

Sens. Actuators A (2)

Z. Liu, D. Lin, H. Jiang, and C. Yin, Sens. Actuators A 104, 127 (2003).
[CrossRef]

C. Wu and Y. Chuang, Sens. Actuators A 116, 145 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of roll measurement interferometer. The dashed box refers to the differential plane mirror interferometer block. Beam I1up and I1low contain the f1 component; beam I2up and I2low contain the f2 component.

Fig. 2.
Fig. 2.

Cross-sectional view of wedge prism with roll θ.

Fig. 3.
Fig. 3.

Schematic of the optical path change from A-view.

Fig. 4.
Fig. 4.

Exit angles of the f1up and f2up when the wedge prism has a yaw error. Here the wedge angle is α=1°.

Fig. 5.
Fig. 5.

Measurement results of verification experiments.

Fig. 6.
Fig. 6.

Measured roll angular displacements of a precision linear stage.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔL=λ2πΔΦ.
sinθ=2db,
Δl=dtanαcos(αβ),
ΔL=8Δl·(n11),
ΔL=4(n11)bsinθtanαcos(αβ).
sinθ=λcos(αβ)8π(n11)btanαΔΦ=K·ΔΦ.

Metrics