Abstract

We demonstrate temporal pulse compression in gas-filled kagomé hollow-core photonic crystal fiber (PCF) using two different approaches: fiber-mirror compression based on self-phase modulation under normal dispersion, and soliton effect self-compression under anomalous dispersion with a decreasing pressure gradient. In the first, efficient compression to near-transform-limited pulses from 103 to 10.6 fs was achieved at output energies of 10.3 μJ. In the second, compression from 24 to 6.8 fs was achieved at output energies of 6.6 μJ, also with near-transform-limited pulse shapes. The results illustrate the potential of kagomé-PCF for postprocessing the output of fiber lasers. We also show that, using a negative pressure gradient, ultrashort pulses can be delivered directly into vacuum.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [CrossRef]
  2. C. Rolland and P. B. Corkum, J. Opt. Soc. Am. B 5, 641 (1988).
    [CrossRef]
  3. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, Opt. Lett. 22, 522 (1997).
    [CrossRef]
  4. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, Opt. Lett. 35, 1887 (2010).
    [CrossRef]
  5. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
    [CrossRef]
  6. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
    [CrossRef]
  7. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef]
  8. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, Opt. Express 11, 2832 (2003).
    [CrossRef]
  9. C. Billet, J. Dudley, N. Joly, and J. Knight, Opt. Express 13, 3236 (2005).
    [CrossRef]
  10. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, Opt. Express 11, 3332 (2003).
    [CrossRef]
  11. F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, Opt. Express 21, 4986 (2013).
    [CrossRef]
  12. O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, Opt. Express 19, 19142 (2011).
    [CrossRef]
  13. M. Nurhuda, A. Suda, M. Kaku, and K. Midorikawa, Appl. Phys. B 89, 209 (2007).
    [CrossRef]
  14. C.-M. Chen and P. L. Kelley, J. Opt. Soc. Am. B 19, 1961 (2002).
    [CrossRef]
  15. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
    [CrossRef]
  16. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, Opt. Express 19, 21018 (2011).
    [CrossRef]
  17. P. Kinsler, Phys. Rev. A 81, 013819 (2010).
    [CrossRef]
  18. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
    [CrossRef]

2013 (1)

2011 (5)

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, Opt. Express 19, 19142 (2011).
[CrossRef]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, Opt. Express 19, 21018 (2011).
[CrossRef]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[CrossRef]

2010 (2)

2007 (1)

M. Nurhuda, A. Suda, M. Kaku, and K. Midorikawa, Appl. Phys. B 89, 209 (2007).
[CrossRef]

2005 (1)

2004 (1)

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[CrossRef]

2003 (2)

2002 (1)

1997 (1)

1988 (1)

1984 (1)

1983 (1)

Baer, C. R. E.

Benabid, F.

Biancalana, F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

Billet, C.

Bohman, S.

Broeng, J.

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, Opt. Express 19, 21018 (2011).
[CrossRef]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[CrossRef]

Chen, C.-M.

Cheng, Y.

Corkum, P. B.

de Matos, C.

De Silvestri, S.

Dudley, J.

Dutin, C. F.

Emaury, F.

Ferencz, K.

Gerome, F.

Gordon, J. P.

Hansen, K.

Hansen, T.

Heckl, O. H.

Hölzer, P.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, Opt. Express 19, 21018 (2011).
[CrossRef]

Joly, N.

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, Opt. Express 19, 21018 (2011).
[CrossRef]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[CrossRef]

Kaku, M.

M. Nurhuda, A. Suda, M. Kaku, and K. Midorikawa, Appl. Phys. B 89, 209 (2007).
[CrossRef]

Kanai, T.

Keller, U.

Kelley, P. L.

Kinsler, P.

P. Kinsler, Phys. Rev. A 81, 013819 (2010).
[CrossRef]

Knight, J.

Kolesik, M.

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[CrossRef]

Krausz, F.

Limpert, J.

Midorikawa, K.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, Opt. Lett. 35, 1887 (2010).
[CrossRef]

M. Nurhuda, A. Suda, M. Kaku, and K. Midorikawa, Appl. Phys. B 89, 209 (2007).
[CrossRef]

Mollenauer, L. F.

Moloney, J. V.

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[CrossRef]

Nazarkin, A.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, Opt. Express 19, 21018 (2011).
[CrossRef]

Nisoli, M.

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[CrossRef]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, Opt. Express 19, 21018 (2011).
[CrossRef]

Nolte, S.

Nurhuda, M.

M. Nurhuda, A. Suda, M. Kaku, and K. Midorikawa, Appl. Phys. B 89, 209 (2007).
[CrossRef]

Rolland, C.

Russell, P. St. J.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[CrossRef]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, Opt. Express 19, 21018 (2011).
[CrossRef]

Saleh, M. F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

Saraceno, C. J.

Sartania, S.

Schreiber, T.

Schriber, C.

Shank, C. V.

Spielmann, C.

Stolen, R. H.

Suda, A.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, Opt. Lett. 35, 1887 (2010).
[CrossRef]

M. Nurhuda, A. Suda, M. Kaku, and K. Midorikawa, Appl. Phys. B 89, 209 (2007).
[CrossRef]

Südmeyer, T.

Svelto, O.

Szipöcs, R.

Taylor, J.

Tomlinson, W. J.

Trant, M.

Travers, J. C.

Tünnermann, A.

Wang, Y. Y.

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

Yamaguchi, S.

Zellmer, H.

Appl. Phys. B (1)

M. Nurhuda, A. Suda, M. Kaku, and K. Midorikawa, Appl. Phys. B 89, 209 (2007).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. A (1)

P. Kinsler, Phys. Rev. A 81, 013819 (2010).
[CrossRef]

Phys. Rev. E (1)

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, Phys. Rev. Lett. 107, 203901 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental setup; inset: far-field output beam profile. The focal lengths of the achromatic lens and the parabolic mirror are respectively 20.3 and 10.2 cm. The intensity on the 2.3 mm thick fused-silica glass windows can reach values up to 70GW/cm2.

Fig. 2.
Fig. 2.

(a) Total dispersion of a kagomé-PCF with a 37 μm core diameter filled with 21 bar of Kr, and 13 bar of Ne. (b) Measured transmission of a 10 cm length of fiber. The high loss at 710nm is caused by coupling between the core mode and a high-loss resonance in the cladding structure. Inset: scanning electron micrograph of fiber cross section.

Fig. 3.
Fig. 3.

Pulse compression for normal dispersion. (a) Spectrum and (b) temporal profile of initial pulse. (c) Spectrum at the output of 4.5 cm of fiber at 21 bar Kr. (d) Temporal profile (solid curve) of (c) after phase compensation (500fs2) with chirped mirrors; the curve with gray circular markers is the transform-limited pulse for the spectrum in (c). (e) Output spectrum after 11 cm of fiber with 10 mbar Kr at input and 15 bar at output. (f) Temporal profile (solid curve) of (e) after compression; the curve with gray circular markers is the transform-limited pulse for the spectrum in (e).

Fig. 4.
Fig. 4.

Pulse compression under anomalous dispersion. (a) Directly measured spectrum and (b) reconstructed temporal profile of input pulse based on direct measurement before the fiber-coupling lens (with known dispersion). (c) Directly measured output spectrum and (d) temporal profile of self-compressed pulse after propagating through 11 cm of fiber filled with 13 bar Ne at the input and vacuum at the output.

Fig. 5.
Fig. 5.

Numerically simulated pulse evolution at 10 μJ launched pulse energy. (a) Spectral evolution along the fiber, the arrow indicating dark regions of very low spectral power density. (b) Temporal profile at four points along the fiber; the FWHM points are marked by green-dashed lines.

Metrics