Abstract

Magnetic-field-dependent optical properties of nitrogen-doped ZnO (ZnO:N) thin films were investigated using surface plasmon resonance (SPR) and a highly sensitive (4.65/Tesla) magnetic field sensor has been realized. The refractive index (RI) of ZnO:N film increases from 1.949 to 2.025 with increase in N doping from 0% to 10% demonstrating tunable RI. In contrast to pure ZnO, SPR curves for ZnO:N films exhibit a shift toward lower angles with increasing applied magnetic field from 0 to 35 mT due to change in reflectance of light upon reflection from ferromagnetic surface. Results indicate promising application of ferromagnetic ZnO:N film as a magnetic field sensor.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetically tunable surface plasmon resonance based on a composite consisting of noble metal nanoparticles and a ferromagnetic thin film

Chih-Ming Wei, Chih-Wei Chen, Chun-Hsiung Wang, Ju-Ying Chen, Yu-Chuan Chen, and Yang-Fang Chen
Opt. Lett. 36(4) 514-516 (2011)

Surface plasmon resonance sensor interrogation with a double-clad fiber coupler and cladding modes excited by a tilted fiber Bragg grating

Mohamad Diaa Baiad, Mathieu Gagné, Wendy-Julie Madore, Etienne De Montigny, Nicolas Godbout, Caroline Boudoux, and Raman Kashyap
Opt. Lett. 38(22) 4911-4914 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription