Abstract

We present a noninterferometric single-shot quantitative phase microscopy technique with the use of the transport of intensity equation (TIE). The optical configuration is based on a Michelson-like architecture attached to a nonmodified inverted transmission bright field microscope. Two laterally separated images from different focal planes can be obtained simultaneously by a single camera exposure, enabling the TIE phase recovery to be performed at frame rates that are only camera limited. Precise measurement of a microlens array validates the principle and demonstrates the accuracy of the method. Investigations of chemical-induced apoptosis and the phagocytosis process of macrophages are then presented, suggesting that the method developed can provide promising applications in the dynamic study of cellular processes.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative phase imaging by single-shot Hilbert–Huang phase microscopy

Maciej Trusiak, Vicente Mico, Javier Garcia, and Krzysztof Patorski
Opt. Lett. 41(18) 4344-4347 (2016)

Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm

Martín Sanz, José Angel Picazo-Bueno, Javier García, and Vicente Micó
Opt. Express 23(16) 21352-21365 (2015)

Noninterferometric quantitative phase imaging with soft x rays

Brendan E. Allman, Phillip J. McMahon, Justine B. Tiller, Keith A. Nugent, David Paganin, Anton Barty, Ian McNulty, Sean P. Frigo, Yuxin Wang, and Cornelia C. Retsch
J. Opt. Soc. Am. A 17(10) 1732-1743 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

» Media 1: MOV (6882 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription