Abstract

We present a noninterferometric single-shot quantitative phase microscopy technique with the use of the transport of intensity equation (TIE). The optical configuration is based on a Michelson-like architecture attached to a nonmodified inverted transmission bright field microscope. Two laterally separated images from different focal planes can be obtained simultaneously by a single camera exposure, enabling the TIE phase recovery to be performed at frame rates that are only camera limited. Precise measurement of a microlens array validates the principle and demonstrates the accuracy of the method. Investigations of chemical-induced apoptosis and the phagocytosis process of macrophages are then presented, suggesting that the method developed can provide promising applications in the dynamic study of cellular processes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
    [CrossRef]
  2. Q. Weijuan, C. O. Choo, Y. Yingjie, and A. Asundi, Appl. Opt. 49, 6448 (2010).
    [CrossRef]
  3. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, Opt. Express 13, 9361 (2005).
    [CrossRef]
  4. B. Kemper and G. von Bally, Appl. Opt. 47, A52 (2008).
    [CrossRef]
  5. G. Pedrini, W. Osten, and Y. Zhang, Opt. Lett. 30, 833 (2005).
    [CrossRef]
  6. C. Falldorf, M. Agour, C. v. Kopylow, and R. B. Bergmann, Appl. Opt. 49, 1826 (2010).
    [CrossRef]
  7. M. Reed Teague, J. Opt. Soc. Am. 73, 1434 (1983).
    [CrossRef]
  8. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
    [CrossRef]
  9. L. Waller, Y. Luo, S. Y. Yang, and G. Barbastathis, Opt. Lett. 35, 2961 (2010).
    [CrossRef]
  10. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, Opt. Express 18, 22817 (2010).
    [CrossRef]
  11. S. S. Gorthi and E. Schonbrun, Opt. Lett. 37, 707 (2012).
    [CrossRef]
  12. P. F. Almoro, L. Waller, M. Agour, C. Falldorf, G. Pedrini, W. Osten, and S. G. Hanson, Opt. Lett. 37, 2088 (2012).
    [CrossRef]
  13. A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
    [CrossRef]
  14. C. Zuo, Q. Chen, Y. Yu, and A. Asundi, Opt. Express 21, 5346 (2013).
    [CrossRef]
  15. E. D. Barone-Nugent, A. Barty, and K. A. Nugent, J. Microsc. 206, 194 (2002).
    [CrossRef]
  16. J. R. Sheppard, J. Opt. Soc. Am. A 21, 828 (2004).
    [CrossRef]
  17. W. Qu, C. O. Choo, V. R. Singh, Y. Yingjie, and A. Asundi, J. Opt. Soc. Am. A 26, 2005 (2009).
    [CrossRef]

2013

2012

2010

2009

2008

2006

A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
[CrossRef]

2005

2004

2002

E. D. Barone-Nugent, A. Barty, and K. A. Nugent, J. Microsc. 206, 194 (2002).
[CrossRef]

1999

1998

1983

Agour, M.

Allen, L. J.

A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
[CrossRef]

Almoro, P. F.

Asundi, A.

Barbastathis, G.

Barone-Nugent, E. D.

E. D. Barone-Nugent, A. Barty, and K. A. Nugent, J. Microsc. 206, 194 (2002).
[CrossRef]

Barty, A.

E. D. Barone-Nugent, A. Barty, and K. A. Nugent, J. Microsc. 206, 194 (2002).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
[CrossRef]

Bergmann, R. B.

Chen, F. R.

A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
[CrossRef]

Chen, Q.

Choo, C. O.

Cuche, E.

Depeursinge, C.

Emery, Y.

Falldorf, C.

Findlay, S. D.

A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
[CrossRef]

Gorthi, S. S.

Hanson, S. G.

Hsieh, W. K.

A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
[CrossRef]

Kai, J. J.

A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
[CrossRef]

Kemper, B.

Kopylow, C. v.

Kou, S. S.

Luo, Y.

Magistretti, P.

Marquet, P.

Martin, A. V.

A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
[CrossRef]

Nugent, K. A.

E. D. Barone-Nugent, A. Barty, and K. A. Nugent, J. Microsc. 206, 194 (2002).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
[CrossRef]

Osten, W.

Paganin, D.

Pedrini, G.

Qu, W.

Rappaz, B.

Reed Teague, M.

Roberts, A.

Schonbrun, E.

Sheppard, C. J. R.

Sheppard, J. R.

Singh, V. R.

von Bally, G.

Waller, L.

Weijuan, Q.

Yang, S. Y.

Yingjie, Y.

Yu, Y.

Zhang, Y.

Zuo, C.

Appl. Opt.

J. Microsc.

E. D. Barone-Nugent, A. Barty, and K. A. Nugent, J. Microsc. 206, 194 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Ultramicroscopy

A. V. Martin, F. R. Chen, W. K. Hsieh, J. J. Kai, S. D. Findlay, and L. J. Allen, Ultramicroscopy 106, 914 (2006).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (6882 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup; NPBS, nonpolarizing beam splitter; M1, M2, mirrors; L1, L2, lenses; SLM, spatial light modulator. The inset shows one light path along the optical axis with zero local tilt.

Fig. 2.
Fig. 2.

Experimental results for a microlens array. (a) Raw image obtained in a single-shot; (b) recovered continuous phase by the SQPM; (c) rewrapped phase from (b); (d) wrapped phase map obtained by DHM; (e) 3D profile for one single lens, indicated by the black square in (c); (f) height distribution obtained by confocal microscopy (CM); and (g) lens thickness cross sections corresponding to the line profiles indicated in (c), (d), and (f), respectively.

Fig. 3.
Fig. 3.

Morphological changes of a macrophage during chemical-induced apoptosis. (a) Raw image acquired by the SQPM; (b) intensity derivative image; (c) in focus bright field image; (d) retrieved phase map; and (e) color-coded 3D phase distributions (upper row) with phase values and cell thickness cross sections (lower row) in different periods after the addition of PDDA. Scale bar, 10 μm.

Fig. 4.
Fig. 4.

Study of the macrophage phagocytosis. (a) Color-coded phase profiles at different stages of phagocytosis (Media 1); (b) phase maps of the nuclear region of the macrophage [indicated by the dotted square in (a)] during the internalization stage; (c) phase/thickness variation with time of three points [indicated by the (A) red, (B) green, and (C) blue dots in (b)], and the average of the whole square region (bottom, black curve). Scale bar, 10 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

kI(r)z=·[I(r)φ(r)],

Metrics