Abstract

Wavelength reuse in a bidirectional radio-over-fiber link is proposed and demonstrated based on the cross-gain modulation (XGM) and the cross-polarization modulation in a semiconductor optical amplifier (SOA). With a polarization beam splitter placed at the remote antenna unit, the polarization-modulated signal generated at the SOA is converted into noninverted and inverted intensity-modulated signals. The noninverted signal is used to cancel the inverted XGM-induced intensity-modulated signal to form a clean optical carrier for wavelength reuse in upstream signal transmission, while the inverted intensity-modulated signal is combined constructively to enhance the XGM-induced signal, providing robust downlink service. A bidirectional transmission of 5 GHz RF signal carrying a 50 MBaud 16 quadrature amplitude modulation baseband signal is experimentally implemented. The error vector magnitude degradation due to the fiber transmission for both the downlink and uplink signal is about 0.2%.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  2. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, and K. L. Lee, J. Lightwave Technol. 28, 390 (2010).
    [CrossRef]
  3. E. Sackinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005).
  4. C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, and F. Y. Shi, J. Lightwave Technol. 27, 4773 (2009).
    [CrossRef]
  5. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, J. Lightwave Technol. 25, 3452 (2007).
    [CrossRef]
  6. E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S. M. Kang, IEEE Trans. Microwave Theor. Tech. 50, 77 (2002).
    [CrossRef]
  7. W. Lee, M. Y. Park, S. H. Cho, J. Lee, and C. Kim, IEEE Photon. Technol. Lett. 17, 2460 (2005).
    [CrossRef]
  8. Y. Y. Won, H. C. Kwon, and S. K. Han, J. Lightwave Technol. 25, 3472 (2007).
    [CrossRef]
  9. Y. Liu, M. Hill, E. Tangdiongga, H. De Waardt, and N. Calabretta, IEEE Photon. Technol. Lett. 15, 90 (2003).
    [CrossRef]
  10. H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
    [CrossRef]
  11. R. Manning, A. Antonopoulos, R. Le Roux, and A. Kelly, Electron. Lett. 37, 229 (2001).
    [CrossRef]
  12. X. S. Yao, X. J. Chen, and T. G. Liu, Opt. Express 18, 6667 (2010).
    [CrossRef]

2010

2009

2007

2005

W. Lee, M. Y. Park, S. H. Cho, J. Lee, and C. Kim, IEEE Photon. Technol. Lett. 17, 2460 (2005).
[CrossRef]

2003

Y. Liu, M. Hill, E. Tangdiongga, H. De Waardt, and N. Calabretta, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

2002

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S. M. Kang, IEEE Trans. Microwave Theor. Tech. 50, 77 (2002).
[CrossRef]

2001

R. Manning, A. Antonopoulos, R. Le Roux, and A. Kelly, Electron. Lett. 37, 229 (2001).
[CrossRef]

1999

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

Antonopoulos, A.

R. Manning, A. Antonopoulos, R. Le Roux, and A. Kelly, Electron. Lett. 37, 229 (2001).
[CrossRef]

Bakaul, M.

Bordonalli, A. C.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S. M. Kang, IEEE Trans. Microwave Theor. Tech. 50, 77 (2002).
[CrossRef]

Calabretta, N.

Y. Liu, M. Hill, E. Tangdiongga, H. De Waardt, and N. Calabretta, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Chang, G. K.

Chen, X. J.

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, and C. Kim, IEEE Photon. Technol. Lett. 17, 2460 (2005).
[CrossRef]

Chow, C. W.

Conforti, E.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S. M. Kang, IEEE Trans. Microwave Theor. Tech. 50, 77 (2002).
[CrossRef]

De Waardt, H.

Y. Liu, M. Hill, E. Tangdiongga, H. De Waardt, and N. Calabretta, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Ellinas, G.

Erasme, D.

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

Gallep, C. M.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S. M. Kang, IEEE Trans. Microwave Theor. Tech. 50, 77 (2002).
[CrossRef]

Gamage, P.

Guekos, G.

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

Han, S. K.

Hill, M.

Y. Liu, M. Hill, E. Tangdiongga, H. De Waardt, and N. Calabretta, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Ho, S. H.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S. M. Kang, IEEE Trans. Microwave Theor. Tech. 50, 77 (2002).
[CrossRef]

Jia, Z.

Kang, S. M.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S. M. Kang, IEEE Trans. Microwave Theor. Tech. 50, 77 (2002).
[CrossRef]

Kelly, A.

R. Manning, A. Antonopoulos, R. Le Roux, and A. Kelly, Electron. Lett. 37, 229 (2001).
[CrossRef]

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, and C. Kim, IEEE Photon. Technol. Lett. 17, 2460 (2005).
[CrossRef]

Kwon, H. C.

Le Roux, R.

R. Manning, A. Antonopoulos, R. Le Roux, and A. Kelly, Electron. Lett. 37, 229 (2001).
[CrossRef]

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, and C. Kim, IEEE Photon. Technol. Lett. 17, 2460 (2005).
[CrossRef]

Lee, K. L.

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, and C. Kim, IEEE Photon. Technol. Lett. 17, 2460 (2005).
[CrossRef]

Lim, C.

Liu, T. G.

Liu, Y.

Y. Liu, M. Hill, E. Tangdiongga, H. De Waardt, and N. Calabretta, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Manning, R.

R. Manning, A. Antonopoulos, R. Le Roux, and A. Kelly, Electron. Lett. 37, 229 (2001).
[CrossRef]

Nirmalathas, A.

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, and C. Kim, IEEE Photon. Technol. Lett. 17, 2460 (2005).
[CrossRef]

Sackinger, E.

E. Sackinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005).

Shi, F. Y.

Soto, H.

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

Tangdiongga, E.

Y. Liu, M. Hill, E. Tangdiongga, H. De Waardt, and N. Calabretta, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

Wang, C. H.

Won, Y. Y.

Xu, L.

Yao, J.

Yao, X. S.

Yeh, C. H.

Yu, J.

Electron. Lett.

R. Manning, A. Antonopoulos, R. Le Roux, and A. Kelly, Electron. Lett. 37, 229 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, and C. Kim, IEEE Photon. Technol. Lett. 17, 2460 (2005).
[CrossRef]

Y. Liu, M. Hill, E. Tangdiongga, H. De Waardt, and N. Calabretta, IEEE Photon. Technol. Lett. 15, 90 (2003).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S. M. Kang, IEEE Trans. Microwave Theor. Tech. 50, 77 (2002).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

E. Sackinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed bidirectional RoF link.

Fig. 2.
Fig. 2.

Electrical spectrum of the downlink signal at the output of the transmitter.

Fig. 3.
Fig. 3.

Electrical spectra measured at the two output ports of the PBS, (a), (b) without fiber transmission, (c), (d) with 2 km SMF transmission, and the electrical spectra of the optical uplink signal (e) without and (f) with 3 km SMF transission.

Fig. 4.
Fig. 4.

Constellation diagrams of the downlink signal measured at the port 2 of the PBS (a) without and (b) with 2 km SMF transmission. The constellation diagrams of the uplink signal (c) at the output of MZM2 and (d) at the CO with 3 km SMF transmission.

Fig. 5.
Fig. 5.

Optical powers at the outputs of the PBS as a function of (a) the wavelength of the probe light and (b) the frequency of the RF signal.

Metrics