Abstract

Minimum shift keying (MSK) has been widely used in fiber optical communication and free-space optical communication. In order to introduce MSK into satellite laser communication, the bit-error rate (BER) performance of the MSK scheme is investigated in uplink communications under the influence of atmospheric turbulence consisting of weak fluctuation and beam wander. Numerical results indicate that the BER performance of MSK is much better than the performance of on–off keying (OOK). With the laser power being 4 W, the improvement is 5 dB in coherent demodulation and 15 dB in delay coherent demodulation. Furthermore, compared with OOK, optimal values of the divergence angle, receiver diameter, and transmitter beam radius are easier and more practical to achieve in the MSK scheme. The work can benefit ground-to-satellite laser uplink communication system design.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ma, Y. J. Jiang, L. Y. Tan, S. Y. Yu, and W. H. Du, Opt. Lett. 33, 2611 (2008).
    [CrossRef]
  2. H. Guo, B. Luo, Y. Ren, S. Zhao, and A. Dang, Opt. Lett. 35, 1977 (2010).
    [CrossRef]
  3. S. Pasupathy, IEEE Commun. Mag 17(4), 14 (1979).
    [CrossRef]
  4. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  5. M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, J. Opt. Soc. Am. A 19, 567 (2002).
    [CrossRef]
  6. A. Rodriguez-Gomez, F. Dios, J. A. Rubio, and A. Comerón, Appl. Opt. 44, 4574 (2005).
    [CrossRef]
  7. F. Dios, J. A. Rubio, A. Rodriguez, and A. Comerón, Appl. Opt. 43, 3866 (2004).
    [CrossRef]
  8. R. M. Gagliardi and S. Karp, Optical Telecommunications (Publishing House of Electronics Industry, 1998).

2010 (1)

2008 (1)

2005 (1)

2004 (1)

2002 (1)

1979 (1)

S. Pasupathy, IEEE Commun. Mag 17(4), 14 (1979).
[CrossRef]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Comerón, A.

Dang, A.

Dios, F.

Du, W. H.

Gagliardi, R. M.

R. M. Gagliardi and S. Karp, Optical Telecommunications (Publishing House of Electronics Industry, 1998).

Guo, H.

Jiang, Y. J.

Jono, T.

Karp, S.

R. M. Gagliardi and S. Karp, Optical Telecommunications (Publishing House of Electronics Industry, 1998).

Luo, B.

Ma, J.

Nakagawa, K.

Pasupathy, S.

S. Pasupathy, IEEE Commun. Mag 17(4), 14 (1979).
[CrossRef]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Ren, Y.

Rodriguez, A.

Rodriguez-Gomez, A.

Rubio, J. A.

Tan, L. Y.

Toyoshima, M.

Yamamoto, A.

Yu, S. Y.

Zhao, S.

Appl. Opt. (2)

IEEE Commun. Mag (1)

S. Pasupathy, IEEE Commun. Mag 17(4), 14 (1979).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Other (2)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

R. M. Gagliardi and S. Karp, Optical Telecommunications (Publishing House of Electronics Industry, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

CD principle block diagram.

Fig. 2.
Fig. 2.

DCD principle block diagram.

Fig. 3.
Fig. 3.

Comparison of PDFs of receiving intensity with and without beam wander. The laser power is 1 W.

Fig. 4.
Fig. 4.

BER performance of OOK and MSK with two demodulation approaches under the effect of atmospheric turbulence and APD noise.

Fig. 5.
Fig. 5.

BERs as functions of divergence angle of laser beam for different modulation schemes.

Fig. 6.
Fig. 6.

BERs as functions of receiver diameter Dr for different modulation schemes.

Fig. 7.
Fig. 7.

BERs as functions of transmitter beam radius W0 for different modulation schemes.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Pr=12πσI2(r,L)1Iexp((lnII(0,L)+2r2W2+σI2(r,L)2)22σI2(r,L)),
P(r)=rσr2exp(r22σr2).
σI2(r,L)=8.702μ3k7/6(Hh0)5/6sec11/6(ζ)+14.508μ1Λ5/6k7/6(Hh0)5/6sec11/6(ζ)(r2W2),
σr2=2.07h0HCn2(z)(Lz)2W(z)1/3dz,
μ1=h0HCn2(h)ξ5/3dh,
μ3=Reh0HCn2(h){ξ5/6[Λξ+i(1(L/Rr)ξ)]5/6Λ5/6ξ5/3}dh,
Pw(I)=0P(r)Pr(I)dr.
s(t)=acos[ωct+akπt/(2Ts)+φk]+n(t),
m0=G·e·Kb+IdcTs,
m1=G·e·(Ks+Kb)+IdcTs,
σ02=(G·e)2·F·Kb+σT2,
σ12=(G·e)2·F·(Ks+Kb)+σT2.
BEROOK0=11/4[erfc((γm1)/2σ1)+erfc((γm0)/2σ0)],
f1(x1)=1/2πσ1exp[(x1m1)2/2σ12],
f2(x2)=1/2πσ1exp[(x2m1)2/2σ12].
BERCD0=1/2erfc(m1/2σ1).
y=asinθk(t)+nc(t),
y=2a+nc(t).
BERDCD0=1/4[erfc((m0+a)/22σ1)+erfc((m0a)/22σ1)].
BEROOK=0BEROOK0Pw(I)dI,
BERCD=0BERCD0Pw(I)dI,
BERDCD=0BERDCD0Pw(I)dI.

Metrics