Abstract

We report the first observation of room-temperature quantum-confined photoluminescence (PL) from low-dimensional Ge1xSnx/Ge superlattices (SLs) up to a high Sn content of 6.96%. Both direct and indirect emissions associated with the interband transitions between minibands in the conduction bands and valence band were observed at room temperature. As the Sn content is increased, the energy difference between the lowest direct and indirect transitions is reduced, indicating an effective modification of the band structure desired for optoelectronics. The integrated PL intensity ratio of direct to indirect recombinations is significantly enhanced with increasing Sn content due to the reduced Γ-L energy separation and quantum confinement effect. Those results suggest that Sn-based low-dimensional structures are promising material for efficient Si-based lasers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription