Abstract

We investigate the role played by fourth-order dispersion on the modulation instability process in dispersion oscillating fibers. It not only leads to the appearance of instability sidebands in the normal dispersion regime (as in uniform fibers), but also to a new class of large detuned instability peaks that we ascribe to the variation of dispersion. All these theoretical predictions are experimentally confirmed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pitois and G. Millot, Opt. Commun. 226, 415 (2003).
    [CrossRef]
  2. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 28, 2225 (2003).
    [CrossRef]
  3. S. Coen and M. Haelterman, Phys. Rev. Lett. 79, 4139 (1997).
    [CrossRef]
  4. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, Opt. Lett. 18, 1499 (1993).
    [CrossRef]
  5. K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, IEEE Photon. Techol. Lett. 7, 1378 (1995).
    [CrossRef]
  6. N. J. Smith and N. J. Doran, Opt. Lett. 21, 570 (1996).
    [CrossRef]
  7. P. Kaewplung, T. Angkaew, and K. Kikuchi, IEEE J. Lightwave Technol. 20, 1895 (2002).
    [CrossRef]
  8. M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Opt. Lett. 37, 4832 (2012).
    [CrossRef]
  9. S. Ambomo, C. M. Ngabireng, P. T. Dinda, A. Labruyere, K. Porsezian, and B. Kalithasan, J. Opt. Soc. Am. B 25, 425 (2008).
    [CrossRef]
  10. M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
    [CrossRef]
  11. S. G. Murdoch, R. Leonhardt, J. D. Harvey, and T. A. B. Kennedy, J. Opt. Soc. Am. B 14, 1816 (1997).
    [CrossRef]
  12. F. K. Abdullaev and J. Garnier, Phys. Rev. E 60, 1042 (1999).
    [CrossRef]
  13. A. Armaroli and F. Biancalana, Opt. Express 20, 25096 (2012).
    [CrossRef]
  14. S. G. Murdoch, M. D. Thomson, R. Leonhardt, and J. D. Harvey, Opt. Lett. 22, 682 (1997).
    [CrossRef]
  15. J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (Springer, 2010).
  16. M. E. Marhic and F. S. Yang, J. Lightwave Technol. 17, 210 (1999).
    [CrossRef]
  17. M. Farahmand and M. de Sterke, Opt. Express 12, 136 (2004).
    [CrossRef]

2013

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

2012

2008

2004

2003

2002

P. Kaewplung, T. Angkaew, and K. Kikuchi, IEEE J. Lightwave Technol. 20, 1895 (2002).
[CrossRef]

1999

F. K. Abdullaev and J. Garnier, Phys. Rev. E 60, 1042 (1999).
[CrossRef]

M. E. Marhic and F. S. Yang, J. Lightwave Technol. 17, 210 (1999).
[CrossRef]

1997

1996

1995

K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, IEEE Photon. Techol. Lett. 7, 1378 (1995).
[CrossRef]

1993

Abdullaev, F. K.

F. K. Abdullaev and J. Garnier, Phys. Rev. E 60, 1042 (1999).
[CrossRef]

Ambomo, S.

Angkaew, T.

P. Kaewplung, T. Angkaew, and K. Kikuchi, IEEE J. Lightwave Technol. 20, 1895 (2002).
[CrossRef]

Armaroli, A.

Biancalana, F.

Bouwmans, G.

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Opt. Lett. 37, 4832 (2012).
[CrossRef]

Coen, S.

de Sterke, M.

Dinda, P. T.

Doran, N. J.

Droques, M.

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Opt. Lett. 37, 4832 (2012).
[CrossRef]

Farahmand, M.

Futami, F.

K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, IEEE Photon. Techol. Lett. 7, 1378 (1995).
[CrossRef]

Garnier, J.

F. K. Abdullaev and J. Garnier, Phys. Rev. E 60, 1042 (1999).
[CrossRef]

Haelterman, M.

S. Coen and M. Haelterman, Phys. Rev. Lett. 79, 4139 (1997).
[CrossRef]

Harvey, J. D.

Kaewplung, P.

P. Kaewplung, T. Angkaew, and K. Kikuchi, IEEE J. Lightwave Technol. 20, 1895 (2002).
[CrossRef]

Kalithasan, B.

Kaneko, S.

K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, IEEE Photon. Techol. Lett. 7, 1378 (1995).
[CrossRef]

Kennedy, T. A. B.

Kikuchi, K.

P. Kaewplung, T. Angkaew, and K. Kikuchi, IEEE J. Lightwave Technol. 20, 1895 (2002).
[CrossRef]

K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, IEEE Photon. Techol. Lett. 7, 1378 (1995).
[CrossRef]

Knight, J. C.

Kudlinski, A.

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Opt. Lett. 37, 4832 (2012).
[CrossRef]

Labruyere, A.

Leonhardt, R.

Lorattanasane, C.

K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, IEEE Photon. Techol. Lett. 7, 1378 (1995).
[CrossRef]

Marhic, M. E.

Martinelli, G.

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Opt. Lett. 37, 4832 (2012).
[CrossRef]

Matera, F.

Mecozzi, A.

Millot, G.

S. Pitois and G. Millot, Opt. Commun. 226, 415 (2003).
[CrossRef]

Murdoch, S. G.

Murdock, J.

J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (Springer, 2010).

Mussot, A.

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Opt. Lett. 37, 4832 (2012).
[CrossRef]

Ngabireng, C. M.

Pitois, S.

S. Pitois and G. Millot, Opt. Commun. 226, 415 (2003).
[CrossRef]

Porsezian, K.

Romagnoli, M.

Russell, P. St. J.

Sanders, J. A.

J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (Springer, 2010).

Settembre, M.

Smith, N. J.

Thomson, M. D.

Verhulst, F.

J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (Springer, 2010).

Wadsworth, W. J.

Wong, G. K. L.

Yang, F. S.

IEEE J. Lightwave Technol.

P. Kaewplung, T. Angkaew, and K. Kikuchi, IEEE J. Lightwave Technol. 20, 1895 (2002).
[CrossRef]

IEEE Photon. Techol. Lett.

K. Kikuchi, C. Lorattanasane, F. Futami, and S. Kaneko, IEEE Photon. Techol. Lett. 7, 1378 (1995).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

S. Pitois and G. Millot, Opt. Commun. 226, 415 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

Phys. Rev. E

F. K. Abdullaev and J. Garnier, Phys. Rev. E 60, 1042 (1999).
[CrossRef]

Phys. Rev. Lett.

S. Coen and M. Haelterman, Phys. Rev. Lett. 79, 4139 (1997).
[CrossRef]

Other

J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Quasi-phase matching curves calculated from Eq. (3) with and without the β¯4 term (blue solid and red dashed lines, respectively) as a function of average GVD for a period Z=1m.

Fig. 2.
Fig. 2.

(a) Gain spectrum versus modulation period. (b) Close-up of the evolution of the second solution of the MI sidelobe, corresponding to q=1, as a function of the modulation period Z. The sidelobe is centered around its central frequency for every Z. The whole spectrum is in the inset on the right.

Fig. 3.
Fig. 3.

(a) Scheme of the experimental setup and (b) longitudinal evolution of the outer diameter.

Fig. 4.
Fig. 4.

QPM curves calculated from Eq. (2) (solid line) and measurement of MI sideband frequencies done by tuning the pump wavelength (markers). Crosses highlight frequencies appearing in the experimental spectra shown in Figs. 5(a) and 5(b).

Fig. 5.
Fig. 5.

Experimental spectra corresponding, respectively, to 1057.7 and 1054.5 nm pump wavelengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(β¯2Ωk22+β¯424Ωk4)(β¯2Ωk22+β¯424Ωk4+2γP)=[πmZ]2,
β¯2Ωk2+β¯412Ωk4+2γP=2πkZ,
Ωk=±6β¯2β¯4±29β¯22β¯42+3β¯4(2πkZ2γP).

Metrics