Abstract

We report experimental as well as theoretical investigation of the key factors that influence the relative timing jitter between hybrid synchronized ultrafast Yb and Er fiber laser systems. Experimental results show that, within the achievable synchronization range, the synchronization performance varies significantly with the relative injection timing between the 1 μm master and 1.5 μm slave pulses. This observation is in agreement with the insights obtained from the theoretical analysis, which identifies the retiming effect as a function of the initial condition of the master–slave pulse collision. By controlling the relative injection timing with a low-bandwidth intracavity feedback, relative timing jitter as low as 0.87 fs (within 1.9 MHz bandwidth) is successfully obtained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hädrich, J. Rothhardt, M. Krebs, S. Demmler, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 4910 (2012).
    [CrossRef]
  2. J. A. Cox, W. P. Putnam, A. Sell, A. Leitenstorfer, and F. X. Kärtner, Opt. Lett. 37, 3579 (2012).
    [CrossRef]
  3. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, Nat. Photonics 2, 733 (2008).
    [CrossRef]
  4. R. K. Shelton, S. M. Foreman, L.-S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
    [CrossRef]
  5. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, Opt. Lett. 28, 947 (2003).
    [CrossRef]
  6. D. Yoshitomi, Y. Kobayashi, M. Kakehata, H. Takada, K. Torizuka, T. Onuma, H. Yokoi, T. Sekiguchi, and S. Nakamura, Opt. Lett. 31, 3243 (2006).
    [CrossRef]
  7. D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, Opt. Lett. 30, 1408 (2005).
    [CrossRef]
  8. D. Yoshitomi, X. Zhou, Y. Kobayashi, H. Takada, and K. Torizuka, Opt. Express 18, 26027 (2010).
    [CrossRef]
  9. W.-W. Hsiang, W.-C. Chiao, C.-Y. Wu, and Y. Lai, Opt. Express 19, 24507 (2011).
    [CrossRef]
  10. Y. Song, K. Jung, and J. Kim, Opt. Lett. 36, 1761 (2011).
    [CrossRef]
  11. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, Opt. Express 19, 14518 (2011).
    [CrossRef]
  12. Z. Zhang, L. Chen, and X. Bao, Opt. Express 18, 8261 (2010).
    [CrossRef]
  13. W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 292 (2010).
    [CrossRef]
  14. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, IEEE J. Quantum Electron. 40, 1458 (2004).
    [CrossRef]
  15. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, Opt. Express 18, 9739 (2010).
    [CrossRef]
  16. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, Opt. Lett. 32, 3504 (2007).
    [CrossRef]
  17. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photonics 4, 33 (2010).
    [CrossRef]

2012 (2)

2011 (3)

2010 (5)

2008 (1)

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, Nat. Photonics 2, 733 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, IEEE J. Quantum Electron. 40, 1458 (2004).
[CrossRef]

2003 (1)

2002 (1)

Adler, F.

Bao, X.

Briles, T. C.

Chang, H.-C.

W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 292 (2010).
[CrossRef]

Chen, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, Nat. Photonics 2, 733 (2008).
[CrossRef]

Chen, L.

Chen, Y.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, IEEE J. Quantum Electron. 40, 1458 (2004).
[CrossRef]

Chiao, W.-C.

Cingöz, A.

Cox, J. A.

Demmler, S.

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photonics 4, 33 (2010).
[CrossRef]

Foreman, S. M.

Fujimoto, J. G.

Gopinath, J. T.

Grein, M. E.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, IEEE J. Quantum Electron. 40, 1458 (2004).
[CrossRef]

Hädrich, S.

Hall, J. L.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photonics 4, 33 (2010).
[CrossRef]

Haus, H. A.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, IEEE J. Quantum Electron. 40, 1458 (2004).
[CrossRef]

Hsiang, W.-W.

W.-W. Hsiang, W.-C. Chiao, C.-Y. Wu, and Y. Lai, Opt. Express 19, 24507 (2011).
[CrossRef]

W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 292 (2010).
[CrossRef]

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photonics 4, 33 (2010).
[CrossRef]

F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, Opt. Lett. 32, 3504 (2007).
[CrossRef]

Ippen, E. P.

Jung, K.

Kaertner, F. X.

Kakehata, M.

Kapteyn, H. C.

Kärtner, F. X.

Kim, C.

Kim, H.

Kim, J.

Kobayashi, Y.

Kolodziejski, L. A.

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photonics 4, 33 (2010).
[CrossRef]

Krebs, M.

Kuzucu, O.

Lai, Y.

W.-W. Hsiang, W.-C. Chiao, C.-Y. Wu, and Y. Lai, Opt. Express 19, 24507 (2011).
[CrossRef]

W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 292 (2010).
[CrossRef]

Leitenstorfer, A.

Limpert, J.

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photonics 4, 33 (2010).
[CrossRef]

Ma, L.-S.

Murnane, M. M.

Nakamura, S.

Notcutt, M.

Onuma, T.

Petrich, G. S.

Putnam, W. P.

Rothhardt, J.

Schibli, T. R.

Sekiguchi, T.

Sell, A.

Shelton, R. K.

Song, Y.

Sotier, F.

Takada, H.

Tandon, S. N.

Torizuka, K.

Tünnermann, A.

Wu, C.-Y.

Ye, J.

Yokoi, H.

Yoshitomi, D.

Yost, D. C.

Zhang, Z.

Zhou, X.

IEEE J. Quantum Electron. (2)

W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 292 (2010).
[CrossRef]

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, IEEE J. Quantum Electron. 40, 1458 (2004).
[CrossRef]

Nat. Photonics (2)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photonics 4, 33 (2010).
[CrossRef]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, Nat. Photonics 2, 733 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (8)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the hybrid synchronized Er and Yb fiber laser amplifier systems. BS, beam splitter; DM, dichroic mirror; BPF, optical bandpass filter; PD, photodiode; LPF, electric low-pass filter; PI, proportional-integral controller; PZT, piezoelectric transducer; M, mirror; WDM, wavelength division multiplexer (WDM1, 1560/1030nm; WDM2, 1560/976nm); LD, laser diode; ISO, polarization independent isolator; PBS, polarization beam splitter; FC, fiber collimator; WP, wave plates.

Fig. 2.
Fig. 2.

(a) Demonstration of successful feedback; (b) measured cross correlation trace and the timing jitters; (c) measured timing jitters of the slave Er fiber laser with different extracavity delay and injection power of 15 and 30 mW; (d) measured optical spectra of the slave Er fiber laser with different extracavity delay and injection power of 30 mW; (e) shift of the center wavelength versus the distance offset.

Fig. 3.
Fig. 3.

Frequency domain analysis of the cross correlation output under the hybrid synchronization. (a) Blue curve (bottom): the stable hybrid synchronization; green curve (middle): the hybrid synchronization with an excess gain of the PI servo; gray curve (top): the hybrid synchronization with only 2.5 mW injection power. (b) Blue curve (top): the stable hybrid synchronization; black curve (bottom): the detection floor.

Fig. 4.
Fig. 4.

(a) Schematic illustration of the two-color pulse collision; (b) calculated single-pass XPM-induced frequency shift and its first-order derivative versus the relative position between the master and slave pulses when entering the SMF of 0.9 m.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

TRdΔωErdT=4dr3τ2ΔωEr+f(δt)(Δt0,ErΔt0,Yb),
TRdΔt0,ErdT=2diΔωEr,
|Δt0,Er(Ω)Δt0,Yb(Ω)|2=Ω4+(4drΩ3τ2TR)2[(Ω2+2f(δt)diTR2)2+(4drΩ3τ2TR)2]|Δt0,Yb(Ω)|2.

Metrics