Abstract

Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (16nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Hahn, in The Transforms and Applications Handbook, A. D. Poularikas, ed., 2nd ed. (CRC, 2000).
  2. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Express 16, 13707 (2008).
    [CrossRef]
  3. Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 558 (2011).
    [CrossRef]
  4. X. Wang, M. Hanawa, K. Nakamura, and K. Nakagawa, in Proceedings of the 15th Asia-Pacific Conference on Communications (2009), p. 622.
  5. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, Opt. Lett. 38, 727 (2013).
    [CrossRef]
  6. J. Davis, D. McNamara, D. Cottrell, and J. Campos, Opt. Lett. 25, 99 (2000).
    [CrossRef]
  7. M. H. Asghari and J. Azaña, Opt. Lett. 34, 334 (2009).
    [CrossRef]
  8. M. Li and J. Yao, IEEE Photon. Technol. Lett. 22, 1559 (2010).
    [CrossRef]
  9. L. Zhuang, M. R. Khan, W. Beeker, A. Leinse, R. Heideman, and C. Roeloffzen, Opt. Express 20, 26499 (2012).
    [CrossRef]
  10. C. Sima, J. C. Gates, M. N. Zervas, and P. G. R. Smith, Front. Optoelectron. 6, 78 (2013).
    [CrossRef]
  11. R. Ashrafi and J. Azaña, Opt. Lett. 37, 2604 (2012).
    [CrossRef]
  12. C. Sima, J. C. Gates, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, Opt. Express 21, 15747 (2013).
    [CrossRef]
  13. P. A. Williams, Electron. Lett. 35, 1758 (1999).
    [CrossRef]
  14. R. Feced, M. N. Zervas, and M. A. Muriel, J. Quantum Electron. 35, 1105 (1999).
    [CrossRef]
  15. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, Opt. Express 20, 317 (2012).
    [CrossRef]
  16. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, Opt. Express 20, 1129 (2012).
    [CrossRef]

2013 (3)

2012 (4)

2011 (1)

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 558 (2011).
[CrossRef]

2010 (1)

M. Li and J. Yao, IEEE Photon. Technol. Lett. 22, 1559 (2010).
[CrossRef]

2009 (1)

2008 (1)

2000 (1)

1999 (2)

P. A. Williams, Electron. Lett. 35, 1758 (1999).
[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Asghari, M. H.

Ashrafi, R.

Azaña, J.

Baeuerle, B.

Becker, J.

Beeker, W.

Ben-Ezra, S.

Bui, L. A.

Campos, J.

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 558 (2011).
[CrossRef]

Cottrell, D.

Davis, J.

Dreschmann, M.

Emami, H.

Feced, R.

R. Feced, M. N. Zervas, and M. A. Muriel, J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Freude, W.

Gates, J. C.

Guan, P.

Hahn, S. L.

S. L. Hahn, in The Transforms and Applications Handbook, A. D. Poularikas, ed., 2nd ed. (CRC, 2000).

Hanawa, M.

X. Wang, M. Hanawa, K. Nakamura, and K. Nakagawa, in Proceedings of the 15th Asia-Pacific Conference on Communications (2009), p. 622.

Heideman, R.

Hillerkuss, D.

Hirooka, T.

Holmes, C.

Huebner, M.

Khan, M. R.

Koos, C.

Leinse, A.

Leuthold, J.

Li, M.

M. Li and J. Yao, IEEE Photon. Technol. Lett. 22, 1559 (2010).
[CrossRef]

Li, W.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 558 (2011).
[CrossRef]

Li, Z.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 558 (2011).
[CrossRef]

Ludwig, A.

McNamara, D.

Mennea, P. L.

Meyer, J.

Meyer, M.

Mitchell, A.

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Nakagawa, K.

X. Wang, M. Hanawa, K. Nakamura, and K. Nakagawa, in Proceedings of the 15th Asia-Pacific Conference on Communications (2009), p. 622.

Nakamura, K.

X. Wang, M. Hanawa, K. Nakamura, and K. Nakagawa, in Proceedings of the 15th Asia-Pacific Conference on Communications (2009), p. 622.

Nakazawa, M.

Nebendahl, B.

Roeloffzen, C.

Rogers, H. L.

Ruan, P.

Sarkhosh, N.

Schmogrow, R.

Sima, C.

Smith, P. G. R.

Wang, X.

X. Wang, M. Hanawa, K. Nakamura, and K. Nakagawa, in Proceedings of the 15th Asia-Pacific Conference on Communications (2009), p. 622.

Williams, P. A.

P. A. Williams, Electron. Lett. 35, 1758 (1999).
[CrossRef]

Winter, M.

Wolf, S.

Yao, J.

M. Li and J. Yao, IEEE Photon. Technol. Lett. 22, 1559 (2010).
[CrossRef]

Yao, J. P.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 558 (2011).
[CrossRef]

Zervas, M. N.

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 558 (2011).
[CrossRef]

Zhuang, L.

Electron. Lett. (1)

P. A. Williams, Electron. Lett. 35, 1758 (1999).
[CrossRef]

Front. Optoelectron. (1)

C. Sima, J. C. Gates, M. N. Zervas, and P. G. R. Smith, Front. Optoelectron. 6, 78 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 558 (2011).
[CrossRef]

M. Li and J. Yao, IEEE Photon. Technol. Lett. 22, 1559 (2010).
[CrossRef]

J. Quantum Electron. (1)

R. Feced, M. N. Zervas, and M. A. Muriel, J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Other (2)

S. L. Hahn, in The Transforms and Applications Handbook, A. D. Poularikas, ed., 2nd ed. (CRC, 2000).

X. Wang, M. Hanawa, K. Nakamura, and K. Nakagawa, in Proceedings of the 15th Asia-Pacific Conference on Communications (2009), p. 622.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the (a) amplitude and (b) phase responses of a physically realizable HT (solid lines) compared to those of the ideal HT (dashed lines) in the frequency domain.

Fig. 2.
Fig. 2.

(a) Central apodization profile of the Bragg grating for THz bandwidth PHTs; (b) modeled amplitude responses of PHTs with increasing THz bandwidths.

Fig. 3.
Fig. 3.

(a) Modeled data (red dash) and measured data (blue line) of the reflectivity of the initial directly designed PHT; the insets show that the practical Δnac profile was different from the designed Δnac profile, due to the nonlinear effect in the fabrication system; (b) shows the responses of the fabricated PHT, using the Δnac profile in the inset, where the Δnac value outside two main peaks was deliberately enlarged.

Fig. 4.
Fig. 4.

(a) Experimental data showing relationship between the maximum grating refractive index contrast Δnac and duty cycle, tested with a series of uniform planar Bragg gratings; (b) the curve of the synthesis function for linearity enhancement in the DGW fabrication system.

Fig. 5.
Fig. 5.

(a) Measured reflectivity spectra of the fabricated Bragg gratings implementing 1, 1.5, and 2 THz bandwidth PHTs; (b) relative group delay data of the planar Bragg gratings.

Fig. 6.
Fig. 6.

(a) Principle scheme of the integrated all-optical SSB filter device with the planar Bragg grating implementing a 1.5 THz bandwidth PHT; (b) measured optical power output at port B when optical broadband signal is coupled into port A and received from port B.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H[g(t)]=g^(t)=g(t)*1πt=1πPg(τ)tτdτ,
H(ω)=jsgn(ω),
Δn(z)sin2[πneffΔf(zz0)/c]zz0,
Δf=cneffΔz.

Metrics