Abstract

We present a novel photonic approach to generating widely tunable and background-free binary phase-coded radio-frequency (RF) pulses by cascading a polarization modulator (PolM) and a phase modulator (PM). The PolM is used to produce an optical carrier and two sidebands with orthogonal polarization states. The phase shift θ between the optical carrier and the sidebands is controlled by the electrical driving signal applied to the PM. For θ>π/2 or <π/2, the phase of the detected RF signal is 0 or π, respectively. For θ=π/2, there is no RF signal recovered in the photodiode (PD). In this way, binary phase-coded RF pulses can be generated, while the optical power launched to the PD keeps constant. The proposed technique is therefore background free by eliminating the baseband frequency components. Moreover, the carrier frequency of the RF pulses is widely tunable and the π phase shift of the RF signal is independent of the amplitude of the electrical driving signal. The proposed scheme is theoretically analyzed and experimentally verified.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1980).
  2. J. P. Yao, Opt. Commun. 284, 3723 (2011).
    [CrossRef]
  3. P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, Opt. Express 21, 631 (2013).
    [CrossRef]
  4. Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
    [CrossRef]
  5. Y. M. Zhang and S. L. Pan, Opt. Lett. 38, 766 (2013).
    [CrossRef]
  6. L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
    [CrossRef]
  7. L. Gao, X. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
    [CrossRef]
  8. M. Li and J. P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
    [CrossRef]
  9. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
    [CrossRef]
  10. H. Chi and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
    [CrossRef]
  11. M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, J. Lightwave Technol. 27, 5276 (2009).
    [CrossRef]
  12. B. M. Haas and T. E. Murphy, IEEE Photon. J. 3, 1 (2011).
    [CrossRef]

2013

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

L. Gao, X. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

P. Xiang, X. Zheng, H. Zhang, Y. Li, and Y. Chen, Opt. Express 21, 631 (2013).
[CrossRef]

Y. M. Zhang and S. L. Pan, Opt. Lett. 38, 766 (2013).
[CrossRef]

2012

2011

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

B. M. Haas and T. E. Murphy, IEEE Photon. J. 3, 1 (2011).
[CrossRef]

2009

2008

H. Chi and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

Abtahi, M.

Bogoni, A.

Chen, X.

L. Gao, X. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

Chen, Y.

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

H. Chi and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

Dastmalchi, M.

Gao, L.

L. Gao, X. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

Ghelfi, P.

Haas, B. M.

B. M. Haas and T. E. Murphy, IEEE Photon. J. 3, 1 (2011).
[CrossRef]

Laghezza, F.

LaRochelle, S.

Li, M.

M. Li and J. P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
[CrossRef]

Li, W.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Li, Y.

Li, Z.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Liu, J. G.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Murphy, T. E.

B. M. Haas and T. E. Murphy, IEEE Photon. J. 3, 1 (2011).
[CrossRef]

Pan, S. L.

Rusch, L. A.

Scotti, F.

Skolnik, M. L.

M. L. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1980).

Wang, H.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Wang, L. X.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Xiang, P.

Yao, J. P.

L. Gao, X. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

M. Li and J. P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
[CrossRef]

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

H. Chi and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

Zhang, H.

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Zhang, Y. M.

Zheng, J. Y.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

Zheng, X.

Zhu, N. H.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

H. Chi and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

IEEE Photon. J.

B. M. Haas and T. E. Murphy, IEEE Photon. J. 3, 1 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 678 (2013).
[CrossRef]

L. Gao, X. Chen, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 899 (2013).
[CrossRef]

M. Li and J. P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. P. Yao, Opt. Commun. 284, 3723 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. L. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup (LD, laser diode; PolM, polarization modulator; PC, polarization controller; PM, phase modulator; Pol., polarizer; PD, photodiode). (b) Schematic illustration of the principle of the proposed scheme in the optical, electrical, and time domains.

Fig. 2.
Fig. 2.

(a) Electrically generated 13-bit Barker code. (b) Measured waveform of the noncoded RF signal at the frequency of 26 GHz. (c) Measured waveform of the Barker-coded RF pulse. (d) Extracted phase information from (c). (e) Measured waveform of the Barker coded RF pulses in a larger time scale of 20 ns.

Fig. 3.
Fig. 3.

(a) Measured electrical spectrum of the Barker coded RF pulses at the carrier frequency of 26 GHz. (b) Autocorrelation of the Barker-coded pulse at the frequency of 26 GHz. Inset shows a zoom-in view of the autocorrelation.

Fig. 4.
Fig. 4.

(a) Measured waveform of the Barker-coded RF pulse at a carrier frequency of 10 GHz. (b) Extracted phase information from (a).

Fig. 5.
Fig. 5.

(a) Measured electrical spectrum of the Barker coded RF pulses at the carrier frequency of 10 GHz. (b) Autocorrelation of the Barker-coded pulse at a carrier frequency of 10 GHz. Inset shows a zoom-in view of the autocorrelation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E PolM ( t ) = [ E x E y ] [ exp j ( ω 0 t + β 1 cos ( ω RF t ) ) exp j ( ω 0 t β 1 cos ( ω RF t ) + φ 1 ) ] ,
E PloM ( t ) = [ E x E y ] [ J 0 ( β 1 ) + j J 1 ( β 1 ) exp ( j ω RF t ) + j J 1 ( β 1 ) exp ( j ω RF t ) J 0 ( β 1 ) j J 1 ( β 1 ) exp ( j ω RF t ) j J 1 ( β 1 ) exp ( j ω RF t ) ] ,
E PloM ( t ) = [ E x + 45 ° E y + 45 ° ] [ J 1 ( β 1 ) exp ( j ω RF t + j π / 2 ) + J 1 ( β 1 ) exp ( j ω RF t + j π / 2 ) J 0 ( β 1 ) ] .
E PM ( t ) = [ E x + 45 ° E y + 45 ° ] [ J 1 ( β 1 ) exp ( j ω RF t + j π / 2 ) exp [ j π V ( t ) V π 2 TM ] + J 1 ( β 1 ) exp ( j ω RF t + j π / 2 ) exp [ j π V ( t ) V π 2 TM ] J 0 ( β 1 ) · exp [ j π V ( t ) V π 2 TE ] exp ( j φ 2 ) ] ,
E out ( t ) J 0 ( β 1 ) · exp [ j π V ( t ) V π 2 TE ] + J 1 ( β 1 ) exp ( j ω RF t + j π / 2 ) · exp [ j π V ( t ) V π 2 TM ] + J 1 ( β 1 ) exp ( j ω RF t + j π / 2 ) · exp [ j π V ( t ) V π 2 TM ] ,
θ = π V ( t ) · ( 1 V π 2 TM 1 V π 2 TE ) + π 2 .
i ( t ) E out ( t ) · E o u t * ( t ) J 0 2 ( β 1 ) + 2 J 1 2 ( β 1 ) 4 J 0 ( β 1 ) J 1 ( β 1 ) · sin [ π V ( t ) · ( 1 V π 2 TM 1 V π 2 TE ) ] · cos ( ω RF t ) .

Metrics