Abstract

Our studies of terahertz pulse propagation in the atmosphere have identified the two most optimal communication channels. The potential of these channels is demonstrated by physically accurate linear dispersion theory calculations of digital pulse propagation, showing it is possible to have two high-performance, point-to-point digital terahertz links in the atmosphere: a direct 95 GHz, 20 km ground link at 9.5Gb/s with power loss of 10 dB due to water vapor at RH 58% (10g/m3) and 20°C, and a direct 250 GHz, geosynchronous satellite link at 20.8Gb/s with a 2 km zenith path with water vapor loss of 9 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wells, IEEE Microw. Mag. 10(3), 104 (2009).
  2. T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, IEEE Microw. Mag. 10(2), 68 (2009).
  3. E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
    [CrossRef]
  4. Y. Yang, A. Shutler, and D. Grischkowsky, Opt. Express 19, 8830 (2011).
    [CrossRef]
  5. Y. Yang, M. Mandehgar, and D. Grischkowsky, IEEE Trans. THz Sci. Technol. 2, 406 (2012).
  6. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
    [CrossRef]
  7. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
  8. S. D. Gasster, C. H. Townes, D. Goorvitch, and F. P. J. Valero, J. Opt. Soc. Am. B 5, 593 (1988).
    [CrossRef]
  9. M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Phys. Rev. 75, 1524 (1949).
    [CrossRef]
  10. D. E. Burch and G. A. Gryvnak, in Proceedings of the International Workshop on Atmospheric Water Vapor (Academic, 1980), pp. 47–76.
  11. H. J. Liebe, Int. J. Infrared Millim. Waves 5, 207 (1984).
    [CrossRef]
  12. P. W. Rosenkranz, Radio Sci. 33, 919 (1998).
    [CrossRef]
  13. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, J. Quant. Spectrosc. Radiat. Transfer 112, 1286 (2011).
    [CrossRef]
  14. D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013).
    [CrossRef]
  15. R. K. Crane, Proc. IEEE 59, 173 (1971).
    [CrossRef]

2013 (1)

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013).
[CrossRef]

2012 (1)

Y. Yang, M. Mandehgar, and D. Grischkowsky, IEEE Trans. THz Sci. Technol. 2, 406 (2012).

2011 (3)

I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, J. Quant. Spectrosc. Radiat. Transfer 112, 1286 (2011).
[CrossRef]

Y. Yang, A. Shutler, and D. Grischkowsky, Opt. Express 19, 8830 (2011).
[CrossRef]

E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
[CrossRef]

2009 (2)

J. Wells, IEEE Microw. Mag. 10(3), 104 (2009).

T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, IEEE Microw. Mag. 10(2), 68 (2009).

1998 (2)

P. W. Rosenkranz, Radio Sci. 33, 919 (1998).
[CrossRef]

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
[CrossRef]

1988 (1)

1984 (1)

H. J. Liebe, Int. J. Infrared Millim. Waves 5, 207 (1984).
[CrossRef]

1971 (1)

R. K. Crane, Proc. IEEE 59, 173 (1971).
[CrossRef]

1949 (1)

M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Phys. Rev. 75, 1524 (1949).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

Burch, D. E.

D. E. Burch and G. A. Gryvnak, in Proceedings of the International Workshop on Atmospheric Water Vapor (Academic, 1980), pp. 47–76.

Cianca, E.

E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
[CrossRef]

Cohen, E. A.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
[CrossRef]

Crane, R. K.

R. K. Crane, Proc. IEEE 59, 173 (1971).
[CrossRef]

Delitsky, M. L.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
[CrossRef]

Farserotu, J.

E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
[CrossRef]

Gasster, S. D.

Giles, R. H.

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013).
[CrossRef]

Goorvitch, D.

Goyette, T. M.

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013).
[CrossRef]

Grischkowsky, D.

Y. Yang, M. Mandehgar, and D. Grischkowsky, IEEE Trans. THz Sci. Technol. 2, 406 (2012).

Y. Yang, A. Shutler, and D. Grischkowsky, Opt. Express 19, 8830 (2011).
[CrossRef]

Gryvnak, G. A.

D. E. Burch and G. A. Gryvnak, in Proceedings of the International Workshop on Atmospheric Water Vapor (Academic, 1980), pp. 47–76.

Hirata, A.

T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, IEEE Microw. Mag. 10(2), 68 (2009).

Ingersoll, J. G.

M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Phys. Rev. 75, 1524 (1949).
[CrossRef]

Kado, Y.

T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, IEEE Microw. Mag. 10(2), 68 (2009).

Kosugi, T.

T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, IEEE Microw. Mag. 10(2), 68 (2009).

Liebe, H. J.

H. J. Liebe, Int. J. Infrared Millim. Waves 5, 207 (1984).
[CrossRef]

Mandehgar, M.

Y. Yang, M. Mandehgar, and D. Grischkowsky, IEEE Trans. THz Sci. Technol. 2, 406 (2012).

Meng, C. Y.

M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Phys. Rev. 75, 1524 (1949).
[CrossRef]

Muller, H. S. P.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
[CrossRef]

Nagatsuma, T.

T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, IEEE Microw. Mag. 10(2), 68 (2009).

Pearson, J. C.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
[CrossRef]

Pickett, H. M.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
[CrossRef]

Pinhasi, Y.

E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
[CrossRef]

Poynter, R. L.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
[CrossRef]

Ptashnik, I. V.

I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, J. Quant. Spectrosc. Radiat. Transfer 112, 1286 (2011).
[CrossRef]

Rosenkranz, P. W.

P. W. Rosenkranz, Radio Sci. 33, 919 (1998).
[CrossRef]

Rossi, T.

E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
[CrossRef]

Sacchi, C.

E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
[CrossRef]

Shine, K. P.

I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, J. Quant. Spectrosc. Radiat. Transfer 112, 1286 (2011).
[CrossRef]

Shutler, A.

Slingerland, E. J.

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013).
[CrossRef]

Slocum, D. M.

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013).
[CrossRef]

Strandberg, M. W. P.

M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Phys. Rev. 75, 1524 (1949).
[CrossRef]

Townes, C. H.

Valero, F. P. J.

Vigasin, A. A.

I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, J. Quant. Spectrosc. Radiat. Transfer 112, 1286 (2011).
[CrossRef]

Wells, J.

J. Wells, IEEE Microw. Mag. 10(3), 104 (2009).

Yaholom, A.

E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
[CrossRef]

Yang, Y.

Y. Yang, M. Mandehgar, and D. Grischkowsky, IEEE Trans. THz Sci. Technol. 2, 406 (2012).

Y. Yang, A. Shutler, and D. Grischkowsky, Opt. Express 19, 8830 (2011).
[CrossRef]

IEEE Microw. Mag. (2)

J. Wells, IEEE Microw. Mag. 10(3), 104 (2009).

T. Kosugi, A. Hirata, T. Nagatsuma, and Y. Kado, IEEE Microw. Mag. 10(2), 68 (2009).

IEEE Trans. THz Sci. Technol. (1)

Y. Yang, M. Mandehgar, and D. Grischkowsky, IEEE Trans. THz Sci. Technol. 2, 406 (2012).

Int. J. Infrared Millim. Waves (1)

H. J. Liebe, Int. J. Infrared Millim. Waves 5, 207 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (3)

I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, J. Quant. Spectrosc. Radiat. Transfer 112, 1286 (2011).
[CrossRef]

D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013).
[CrossRef]

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, J. Quant. Spectrosc. Radiat. Transfer 60, 883 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

M. W. P. Strandberg, C. Y. Meng, and J. G. Ingersoll, Phys. Rev. 75, 1524 (1949).
[CrossRef]

Proc. IEEE (2)

E. Cianca, T. Rossi, A. Yaholom, Y. Pinhasi, J. Farserotu, and C. Sacchi, Proc. IEEE 99, 1858 (2011).
[CrossRef]

R. K. Crane, Proc. IEEE 59, 173 (1971).
[CrossRef]

Radio Sci. (1)

P. W. Rosenkranz, Radio Sci. 33, 919 (1998).
[CrossRef]

Other (2)

D. E. Burch and G. A. Gryvnak, in Proceedings of the International Workshop on Atmospheric Water Vapor (Academic, 1980), pp. 47–76.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Transmitted THz pulse. Inset shows the input THz pulse together with the much smaller THz output pulse. (b) Amplitude spectrum of transmitted pulse. Regions I and II mark atmospheric communication channels I and II. Inset shows the input spectrum and the much smaller output spectrum.

Fig. 2.
Fig. 2.

(a) Calculated amplitude transmission for a 2 km length of water vapor at RH 58% (10g/m3) and 20°C and O2 vapor in the atmosphere, for the van-Vleck Weisskopf (v-VW) lineshape. The calculation also includes the water continuum absorption. (b) Corresponding calculated v-VW phase in radians. For channel I, the calculated refractivity phase Φ is also shown for a 10 km length. The highlighted amplitude spectra of THz links I and II are shown with center frequencies of 95 and 250 GHz.

Fig. 3.
Fig. 3.

(a) GVD in ps2/km for the phase results of Fig. 2. (b) GVD results of (a) with a factor of 200 increase in vertical sensitivity show GVD=2.44ps2/km at 95 GHz and GVD=29.7 at 250 GHz. The highlighted bands mark the ground link at 95 GHz and the satellite link at 250 GHz.

Fig. 4.
Fig. 4.

(a) Channel I: input transform-limited THz “one” bit pulses (black larger pulses) and the calculated smaller, red output pulses after 20 km propagation in the atmosphere with RH 58% (10g/m3) and 20°C. (b) Calculated homodyne detected input upper black current pulses and the output lower red pulses, clearly showing the (1101) bit sequence.

Fig. 5.
Fig. 5.

(a) Channel II: input transform-limited THz “one” bit pulses II (black larger pulses) and the calculated smaller, red output pulses after 2 km propagation in the atmosphere with RH 58% and at 20°C (equivalent to zenith integration) [15]. (b) Calculated homodyne detected input upper black current pulses and the output lower red pulses, clearly showing the four bit sequence (1101).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

αc(f)=αo/[1+Bexp((f+80)/69)]αo/[1+Bexp(80/69)],
E(z,ω)=E(0,ω)exp[iΔk(ω)z]exp[α(ω)z/2],

Metrics