Abstract

We report an in-fiber integrated chemiluminiscence (CL) sensor based on a kind of hollow optical fiber with a suspended inner core. The path of microfluid is realized by etching microholes for inlets and outlets on the surface of the optical fiber without damaging the inner core and then constructing a melted point beside the microhole of the outlet. When samples are injected into the fiber, the liquids can be fully mixed and form steady microflows. Simultaneously, the photon emitted from the CL reaction is efficiently coupled into the core and can be detected at the end of the optical fiber. In this Letter, the concentration of H2O2 samples is analyzed through the emission intensity of the CL reaction among H2O2, luminol, K3Fe(CN)6, and NaOH in the optical fiber. The linear sensing range of 0.14.0mmol/L of H2O2 concentration is obtained. The emission intensity can be determined within 400 ms at a total flow rate of 150μL/min. Significantly, this work presents the information of developing in-fiber integrated online analyzing devices based on optical methods.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
    [CrossRef]
  2. Y. Wang, D. Wang, C. Liao, T. Hu, J. Guo, and H. Wei, Opt. Lett. 38, 269 (2013).
    [CrossRef]
  3. W. Qian, C. Zhao, Y. Wang, C. Chan, S. Liu, and W. Jin, Opt. Lett. 34, 3296 (2010).
  4. X. Yang and L. Wang, Opt. Express 15, 16478 (2007).
    [CrossRef]
  5. P. Ghenuche, H. Rigneault, and J. Wenger, Opt. Express 20, 28379 (2012).
    [CrossRef]
  6. D. Faccio, A. Grün, P. K. Bates, O. Chalus, and J. Biegert, Opt. Lett. 34, 2918 (2009).
    [CrossRef]
  7. Y. P. Wang, X. L. Tan, W. Jin, D. Q. Ying, Y. L. Hoo, and S. J. Liu, Opt. Lett. 35, 88 (2010).
    [CrossRef]
  8. X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, Sens. Actuators B Chem. 137, 462 (2009).
    [CrossRef]
  9. D. J. Bowles, A. S. Olson, N. H. Hodges Ii, D. L. Heglund, R. L. Vargas, and S. A. Williams, Appl. Spectrosc. 66, 175 (2012).
    [CrossRef]
  10. A. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, J. Joannopoulos, and Y. Fink, Opt. Express 20, 12407 (2012).
    [CrossRef]
  11. B. Schartel, S. Krüger, V. Wachtendorf, and M. Hennecke, J. Lightwave Technol. 17, 2291 (1999).
    [CrossRef]
  12. D. Li and L. Wang, Appl. Spectrosc. 64, 514 (2010).
    [CrossRef]

2013 (1)

2012 (4)

2010 (3)

2009 (2)

D. Faccio, A. Grün, P. K. Bates, O. Chalus, and J. Biegert, Opt. Lett. 34, 2918 (2009).
[CrossRef]

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, Sens. Actuators B Chem. 137, 462 (2009).
[CrossRef]

2007 (1)

1999 (1)

Badding, J. V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
[CrossRef]

Bates, P. K.

Benoit, G.

Biegert, J.

Bowles, D. J.

Chalus, O.

Chan, C.

W. Qian, C. Zhao, Y. Wang, C. Chan, S. Liu, and W. Jin, Opt. Lett. 34, 3296 (2010).

Faccio, D.

Fink, Y.

Ghenuche, P.

Gopalan, V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
[CrossRef]

Grün, A.

Gumennik, A.

Guo, J.

He, R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
[CrossRef]

Healy, N.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
[CrossRef]

Heglund, D. L.

Hennecke, M.

Hodges Ii, N. H.

Hoo, Y. L.

Hu, T.

Jin, W.

Y. P. Wang, X. L. Tan, W. Jin, D. Q. Ying, Y. L. Hoo, and S. J. Liu, Opt. Lett. 35, 88 (2010).
[CrossRef]

W. Qian, C. Zhao, Y. Wang, C. Chan, S. Liu, and W. Jin, Opt. Lett. 34, 3296 (2010).

Joannopoulos, J.

Khairudin, N. A.

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, Sens. Actuators B Chem. 137, 462 (2009).
[CrossRef]

Krishnamurthi, M.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
[CrossRef]

Krüger, S.

Kuriki, K.

Kwok, Y. C.

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, Sens. Actuators B Chem. 137, 462 (2009).
[CrossRef]

Li, D.

Liao, C.

Liu, S.

W. Qian, C. Zhao, Y. Wang, C. Chan, S. Liu, and W. Jin, Opt. Lett. 34, 3296 (2010).

Liu, S. J.

McDaniel, W.

Olson, A. S.

Peacock, A. C.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
[CrossRef]

Qian, W.

W. Qian, C. Zhao, Y. Wang, C. Chan, S. Liu, and W. Jin, Opt. Lett. 34, 3296 (2010).

Rigneault, H.

Rose, A.

Sazio, P. J. A.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
[CrossRef]

Schartel, B.

Schell, B.

Shapira, O.

Shum, P.

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, Sens. Actuators B Chem. 137, 462 (2009).
[CrossRef]

Sorin, F.

Sparks, J. R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, Nat. Photonics 6, 174 (2012).
[CrossRef]

Stolyarov, A.

Tan, X. L.

Vargas, R. L.

Wachtendorf, V.

Wang, D.

Wang, L.

Wang, Y.

Y. Wang, D. Wang, C. Liao, T. Hu, J. Guo, and H. Wei, Opt. Lett. 38, 269 (2013).
[CrossRef]

W. Qian, C. Zhao, Y. Wang, C. Chan, S. Liu, and W. Jin, Opt. Lett. 34, 3296 (2010).

Wang, Y. P.

Wei, H.

Wenger, J.

Williams, S. A.

Yang, X.

Ying, D. Q.

Yu, X.

X. Yu, Y. C. Kwok, N. A. Khairudin, and P. Shum, Sens. Actuators B Chem. 137, 462 (2009).
[CrossRef]

Zhao, C.

W. Qian, C. Zhao, Y. Wang, C. Chan, S. Liu, and W. Jin, Opt. Lett. 34, 3296 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch of the in-fiber integrated CL sensor.

Fig. 2.
Fig. 2.

Emission spectrum of the reaction between luminol and H2O2.

Fig. 3.
Fig. 3.

Influence of pH value on the intensity of the emission.

Fig. 4.
Fig. 4.

Typical calibration plots for H2O2 samples.

Fig. 5.
Fig. 5.

Dynamic response of the in-fiber analyzing system.

Metrics