Abstract

We demonstrate that the dynamics of the soliton self-frequency shift can be accurately controlled by using tapered optical fibers with optimized longitudinal profile shape (that we term topographic fibers). The tapering profiles tailored for a targeted soliton spectral trajectory through dispersion and nonlinearity management are determined by an inverse algorithm. This control is demonstrated experimentally with topographic photonic crystal fibers fabricated directly on a drawing tower.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006).
  2. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, Opt. Lett. 18, 476 (1993).
    [CrossRef]
  3. H.-P. Chuang and C.-B. Huang, Opt. Lett. 36, 2848 (2011).
    [CrossRef]
  4. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef]
  5. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier/Academic, 2007).
  7. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
    [CrossRef]
  8. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, J. Opt. Soc. Am. B 26, 2064 (2009).
    [CrossRef]
  9. A. M. Al-Kadry and M. Rochette, J. Opt. Soc. Am. B 29, 1347 (2012).
    [CrossRef]
  10. O. Vanvincq, A. Bendahmane, A. Mussot, and A. Kudlinski, Phys. Rev. A 85, 033838 (2012).
    [CrossRef]
  11. M. Mitchell, An Introduction to Genetic Algorithms (MIT, 1998).
  12. N. G. R. Broderick, Opt. Express 18, 24060 (2010).
    [CrossRef]
  13. M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
    [CrossRef]
  14. P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
    [CrossRef]
  15. J. Laegsgaard, Opt. Express 15, 16110 (2007).
    [CrossRef]
  16. K. Saitoh and M. Koshiba, Opt. Express 13, 267 (2005).
    [CrossRef]
  17. S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. de Sterke, and B. J. Eggleton, Opt. Express 19, 17766 (2011).
    [CrossRef]
  18. I. Gris-Sánchez, B. Mangan, and J. C. Knight, Opt. Mater. Express 1, 179 (2011).
    [CrossRef]

2012 (2)

O. Vanvincq, A. Bendahmane, A. Mussot, and A. Kudlinski, Phys. Rev. A 85, 033838 (2012).
[CrossRef]

A. M. Al-Kadry and M. Rochette, J. Opt. Soc. Am. B 29, 1347 (2012).
[CrossRef]

2011 (3)

2010 (1)

2009 (1)

2008 (1)

M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
[CrossRef]

2007 (1)

2005 (1)

2001 (1)

1993 (1)

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

1986 (2)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier/Academic, 2007).

Al-Kadry, A. M.

Bang, O.

Baronio, F.

M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
[CrossRef]

Bassi, P.

M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
[CrossRef]

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

Bendahmane, A.

O. Vanvincq, A. Bendahmane, A. Mussot, and A. Kudlinski, Phys. Rev. A 85, 033838 (2012).
[CrossRef]

Broderick, N. G. R.

Chandalia, J. K.

Chernikov, S. V.

Chuang, H.-P.

Conforti, M.

M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
[CrossRef]

De Angelis, C.

M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
[CrossRef]

de Sterke, C. M.

Dekker, S. A.

Dianov, E. M.

Eggleton, B. J.

Gordon, J. P.

Gris-Sánchez, I.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

Huang, C.-B.

Judge, A. C.

Knight, J. C.

Knox, W. H.

Koshiba, M.

Kosinski, S. G.

Kudlinski, A.

O. Vanvincq, A. Bendahmane, A. Mussot, and A. Kudlinski, Phys. Rev. A 85, 033838 (2012).
[CrossRef]

Kuhlmey, B. T.

Laegsgaard, J.

Liu, X.

Mägi, E. C.

Malomed, B. A.

B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006).

Mangan, B.

Mitchell, M.

M. Mitchell, An Introduction to Genetic Algorithms (MIT, 1998).

Mitschke, F. M.

Mollenauer, L. F.

Mussot, A.

O. Vanvincq, A. Bendahmane, A. Mussot, and A. Kudlinski, Phys. Rev. A 85, 033838 (2012).
[CrossRef]

Pant, R.

Payne, D. N.

Pierleoni, D.

M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
[CrossRef]

Richardson, D. J.

Rochette, M.

Saitoh, K.

Sanna, G.

M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
[CrossRef]

Vanvincq, O.

O. Vanvincq, A. Bendahmane, A. Mussot, and A. Kudlinski, Phys. Rev. A 85, 033838 (2012).
[CrossRef]

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

Windeler, R. S.

Xu, C.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

M. Conforti, F. Baronio, C. De Angelis, G. Sanna, D. Pierleoni, and P. Bassi, Opt. Commun. 281, 1693 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. A (1)

O. Vanvincq, A. Bendahmane, A. Mussot, and A. Kudlinski, Phys. Rev. A 85, 033838 (2012).
[CrossRef]

Other (3)

M. Mitchell, An Introduction to Genetic Algorithms (MIT, 1998).

B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006).

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier/Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Targeted SSFS trajectories. The yellow line shows the trajectory obtained in a reference uniform fiber. (b) Left axis: longitudinal PCF profiles (in Λ) retrieved by the inverse algorithm (solid lines) with the same color code as in (a). Right axis: outer diameter of the fabricated topographic PCFs (full circles) measured during the drawing process. The dashed line depicts the beginning of the topographic profile, the 1 m long initial segment being used for fission (see text).

Fig. 2.
Fig. 2.

Discrepancy between the targeted soliton wavelength and the one calculated with Eq. (1) using the theoretical profiles retrieved by the inverse algorithm, after 500 cycles. Inset: plot of the J function [Eq. (5)] versus number of modification-evaluation-selection cycles for each targeted SSFS trajectory.

Fig. 3.
Fig. 3.

(a)–(e) Longitudinal evolution of spectrum in the topographic PCFs Nos. 1, 2, 3, and 4 [(a) to (d), respectively] and in the uniform PCF (e) measured with a cutback experiment. Superimposed gray markers are results of MGNLSE calculations taking the spectral dependance of attenuation into account. (f) Evolution of the central wavelength of the first ejected soliton versus fiber length (same color code as in Fig. 1).

Fig. 4.
Fig. 4.

(a) Targeted soliton spectral shift (solid line) and experimentally measured soliton central wavelength (full circles). (b) Longitudinal profile retrieved by the algorithm (solid line, left axis) and measured outer diameter of the fabricated fiber (full circles, right axis).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dωsdz=fR|β2(z)|Ts(z)π4K(T)×I(z)
I(z)=I(h˜R(Ω))Ω3sinh2(Ts(z)πΩ2)dΩ
K(T)=1fR+fRK2[Ts(z)].
K[Ts(z)]·Ts(z)=γ(0)2|β2(z)|γ(z)2|β2(0)|K[Ts(0)]×Ts(0),
J=1L2[fp(z)ft(z)]2dz+s[dfp(z)dzdft(z)dz]2dz,

Metrics