Abstract

This Letter designed an extra high reflection filter by using multilayers with a negative k, commonly referred to as gain layers. The gain layer was fabricated by embedding CdS quantum dots in a dielectric layer. Experimental results indicated that the effective k value is around 0.0008. The associated optical and physical properties were also discussed. The application of gain layers is very forward-looking.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, Appl. Phys. Lett. 82, 7 (2003).
    [CrossRef]
  2. D. Lusk, I. Abdulhalim, and F. Placido, Opt. Commun. 198, 273 (2001).
    [CrossRef]
  3. D. Kwon, X. Wang, Z. Bayraktar, and B. Weiner, Opt. Lett. 33, 545 (2008).
    [CrossRef]
  4. D. Kwon, D. H. Werner, A. V. Kildishe, and V. M. Shalaev, Opt. Express 15, 1647 (2007).
    [CrossRef]
  5. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009).
    [CrossRef]
  6. S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
    [CrossRef]
  7. A. Macleod, Bull. Soc. Vac. Coaters, Issue Fall, 22 (2011).
  8. I. O. Oladeji and L. Chow, J. Electrochem. Soc. 144, 2342 (1997).
    [CrossRef]
  9. F. Flory, Y. J. Chen, C. C. Lee, L. Escoubas, J. J. Simon, P. Torchio, and J. Le Rouzo, Appl. Opt. 50, C129 (2011).
    [CrossRef]
  10. O. Stenzel, in The Physics of Thin Film Optical Spectra (Academic, 1996), pp. 42–44.

2011 (1)

2010 (1)

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

2009 (1)

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

2008 (1)

2007 (1)

2003 (1)

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, Appl. Phys. Lett. 82, 7 (2003).
[CrossRef]

2001 (1)

D. Lusk, I. Abdulhalim, and F. Placido, Opt. Commun. 198, 273 (2001).
[CrossRef]

1997 (1)

I. O. Oladeji and L. Chow, J. Electrochem. Soc. 144, 2342 (1997).
[CrossRef]

Abdulhalim, I.

D. Lusk, I. Abdulhalim, and F. Placido, Opt. Commun. 198, 273 (2001).
[CrossRef]

Bayraktar, Z.

Chen, Y. J.

Chettiar, U. K.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

Chow, L.

I. O. Oladeji and L. Chow, J. Electrochem. Soc. 144, 2342 (1997).
[CrossRef]

Drachev, V. P.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

Escoubas, L.

Fang, A.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

Flory, F.

Kildishe, A. V.

Kildishev, A. V.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

Koschny, Th.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

Kwon, D.

Le Rouzo, J.

Lee, C. C.

Lusk, D.

D. Lusk, I. Abdulhalim, and F. Placido, Opt. Commun. 198, 273 (2001).
[CrossRef]

Macleod, A.

A. Macleod, Bull. Soc. Vac. Coaters, Issue Fall, 22 (2011).

Ni, X. J.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

Oladeji, I. O.

I. O. Oladeji and L. Chow, J. Electrochem. Soc. 144, 2342 (1997).
[CrossRef]

Placido, F.

D. Lusk, I. Abdulhalim, and F. Placido, Opt. Commun. 198, 273 (2001).
[CrossRef]

Shalaev, V. M.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

D. Kwon, D. H. Werner, A. V. Kildishe, and V. M. Shalaev, Opt. Express 15, 1647 (2007).
[CrossRef]

Shirane, M.

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, Appl. Phys. Lett. 82, 7 (2003).
[CrossRef]

Simon, J. J.

Soukoulis, C. M.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

Stenzel, O.

O. Stenzel, in The Physics of Thin Film Optical Spectra (Academic, 1996), pp. 42–44.

Tokushima, M.

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, Appl. Phys. Lett. 82, 7 (2003).
[CrossRef]

Torchio, P.

Ushida, J.

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, Appl. Phys. Lett. 82, 7 (2003).
[CrossRef]

Wang, X.

Wegener, M.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

Weiner, B.

Werner, D. H.

Xiao, S. M.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

Yamada, H.

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, Appl. Phys. Lett. 82, 7 (2003).
[CrossRef]

Yuan, H. K.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, Appl. Phys. Lett. 82, 7 (2003).
[CrossRef]

J. Electrochem. Soc. (1)

I. O. Oladeji and L. Chow, J. Electrochem. Soc. 144, 2342 (1997).
[CrossRef]

Nature (1)

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, Nature 466, 735 (2010).
[CrossRef]

Opt. Commun. (1)

D. Lusk, I. Abdulhalim, and F. Placido, Opt. Commun. 198, 273 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, Phys. Rev. B 79, 241104(R) (2009).
[CrossRef]

Other (2)

A. Macleod, Bull. Soc. Vac. Coaters, Issue Fall, 22 (2011).

O. Stenzel, in The Physics of Thin Film Optical Spectra (Academic, 1996), pp. 42–44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Four points that characterize a gain layer with N=2.16+i0.19. These points are indicated in (a) the admittance diagram and (b) the curve of reflectance versus physical thickness.

Fig. 2.
Fig. 2.

Gain layers of fixed thickness and refractive index but various negative k values, (a) 0, (b) 0.002, (c) 0.1, and (d) 0.2.

Fig. 3.
Fig. 3.

(a) Transmittance of gain layer measured with and without pumping as solid line and bold solid line, respectively. Dashed line represents transmittance calculated from dispersive data in Fig. 3(b); (b) refractive index and negative extinction coefficient of SiO2 layer with CdS QDs.

Fig. 4.
Fig. 4.

Replacing L of conventional HR filter design with gain layers pushes the admittance locus through the Yi axis.

Fig. 5.
Fig. 5.

Experimental gain layers were used in an eHR filter. (a) The admittance locus of (HL)12 turns from the conventional clockwise direction to the anticlockwise direction. The magnification of the square area of the subdiagram reveals that this transition occurs in the seventh pair. (b) Reflectance of this design exceeded 100%.

Fig. 6.
Fig. 6.

(a) Admittance locus of (HL)8 LH turns from a conventional clockwise direction into an anticlockwise one. The magnification of the square area of the subdiagram demonstrates that this transition occurs in the gain layer after a conventional HR. (b) Gain layers improve the reflectance of this design.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=[Y0YY0+Y][Y0YY0+Y]*=(Y0Yr)2+Yi2(Y0+Yr)2+Yi2.

Metrics