Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Leakage radiation interference microscopy

Not Accessible

Your library or personal account may give you access

Abstract

We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Study of interference between surface plasmon polaritons by leakage radiation microscopy

Luis Grave de Peralta
J. Opt. Soc. Am. B 27(8) 1513-1517 (2010)

Surface plasmon leakage radiation microscopy at the diffraction limit

A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen
Opt. Express 19(25) 25749-25762 (2011)

Direct image of surface-plasmon-coupled emission by leakage radiation microscopy

Douguo G. Zhang, Xiaocong Yuan, and Alexandre Bouhelier
Appl. Opt. 49(5) 875-879 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved