Abstract

For radio-over-fiber links, microwave-modulated optical carriers with high optical modulation depth are preferred because high optical modulation depth allows generation of high microwave power after photodetection, leading to high detection sensitivity, long transmission distance, and large link gain. This study investigates the period-one nonlinear dynamics of semiconductor lasers for optical modulation depth improvement to achieve photonic microwave amplification through modulation sideband enhancement. In our scheme, only typical semiconductor lasers are required as the amplification unit. The amplification is achieved for a broad microwave range, from less than 25 GHz to more than 60 GHz, and for a wide gain range, from less than 10 dB to more than 30 dB. The microwave phase quality is mainly preserved while the microwave power is largely amplified, improving the signal-to-noise ratio up to at least 25 dB. The bit-error ratio at 1.25Gbits/s is better than 109, and a sensitivity improvement of up to at least 15 dB is feasible.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  2. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006).
    [CrossRef]
  3. M. Attygalle, C. Lim, and A. Nirmalathas, J. Lightwave Technol. 24, 1703 (2006).
    [CrossRef]
  4. Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
    [CrossRef]
  5. A. Perentos, F. Cuesta-Soto, M. Rodrigo, A. Canciamilla, B. Vidal, L. Pierno, A. Griol, N. S. Losilla, L. Bellieres, F. Lopez-Royo, A. Melloni, and S. Iezekiel, Opt. Express 20, 25478 (2012).
    [CrossRef]
  6. K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
    [CrossRef]
  7. A. Loayssa, D. Benito, and M. J. Garde, Opt. Lett. 25, 197 (2000).
    [CrossRef]
  8. S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
    [CrossRef]
  9. S. K. Hwang, H. F. Chen, and C. Y. Lin, Opt. Lett. 34, 812 (2009).
    [CrossRef]
  10. C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
    [CrossRef]
  11. T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
    [CrossRef]
  12. S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
    [CrossRef]
  13. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
    [CrossRef]
  14. X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
    [CrossRef]
  15. Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
    [CrossRef]
  16. A. Quirce and A. Valle, Opt. Express 20, 13390 (2012).
    [CrossRef]
  17. J. P. Zhuang and S. C. Chan, Opt. Lett. 38, 344 (2013).
    [CrossRef]
  18. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
    [CrossRef]
  19. A. Kaszubowska, L. P. Barry, and P. Anandarajah, IEEE Photon. Technol. Lett. 14, 1599 (2002).
    [CrossRef]
  20. S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Express 15, 14921 (2007).
    [CrossRef]
  21. C. Cui, X. Fu, and S. C. Chan, Opt. Lett. 34, 3821 (2009).
    [CrossRef]
  22. Y. H. Hung, C. H. Chu, and S. K. Hwang, Opt. Lett. 38, 1482 (2013).
    [CrossRef]
  23. S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012).
    [CrossRef]
  24. S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010).
    [CrossRef]

2013

J. P. Zhuang and S. C. Chan, Opt. Lett. 38, 344 (2013).
[CrossRef]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

Y. H. Hung, C. H. Chu, and S. K. Hwang, Opt. Lett. 38, 1482 (2013).
[CrossRef]

2012

2011

X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
[CrossRef]

Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
[CrossRef]

2010

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010).
[CrossRef]

2009

2007

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Express 15, 14921 (2007).
[CrossRef]

2006

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, J. Lightwave Technol. 24, 1703 (2006).
[CrossRef]

2004

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

2002

A. Kaszubowska, L. P. Barry, and P. Anandarajah, IEEE Photon. Technol. Lett. 14, 1599 (2002).
[CrossRef]

2000

1999

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

1994

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

Anandarajah, P.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, IEEE Photon. Technol. Lett. 14, 1599 (2002).
[CrossRef]

Attygalle, M.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, J. Lightwave Technol. 24, 1703 (2006).
[CrossRef]

Barry, L. P.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, IEEE Photon. Technol. Lett. 14, 1599 (2002).
[CrossRef]

Bellieres, L.

Benito, D.

Canciamilla, A.

Chan, S. C.

J. P. Zhuang and S. C. Chan, Opt. Lett. 38, 344 (2013).
[CrossRef]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010).
[CrossRef]

C. Cui, X. Fu, and S. C. Chan, Opt. Lett. 34, 3821 (2009).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Express 15, 14921 (2007).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

Chen, H. F.

Cheng, T. H.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Chu, C. H.

Y. H. Hung, C. H. Chu, and S. K. Hwang, Opt. Lett. 38, 1482 (2013).
[CrossRef]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

Cuesta-Soto, F.

Cui, C.

Doft, F.

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

Donati, S.

S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012).
[CrossRef]

Dong, Y.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Esman, R. D.

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

Fu, X.

Garde, M. J.

Griol, A.

He, H.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Hu, W.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Hung, Y. H.

Hwang, S. K.

Iezekiel, S.

Kaszubowska, A.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, IEEE Photon. Technol. Lett. 14, 1599 (2002).
[CrossRef]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Lester, L. F.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Li, Y.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Li, Z.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Lim, C.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, J. Lightwave Technol. 24, 1703 (2006).
[CrossRef]

Lin, C. Y.

Lin, F. Y.

Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
[CrossRef]

Lin, S. L.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

Liu, C.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Liu, J. M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Express 15, 14921 (2007).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

Loayssa, A.

Lopez-Royo, F.

Losilla, N. S.

Melloni, A.

Naderi, N. A.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Nirmalathas, A.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, J. Lightwave Technol. 24, 1703 (2006).
[CrossRef]

Novak, D.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006).
[CrossRef]

Perentos, A.

Pierno, L.

Pochet, M.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Qi, X. Q.

X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
[CrossRef]

Quirce, A.

Rodrigo, M.

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

Tian, X.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

Valle, A.

Vidal, B.

Wang, Q.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Wang, Y.

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

Waterhouse, R.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006).
[CrossRef]

Williams, K. J.

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

Yao, J. P.

Yuan, Y. S.

Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
[CrossRef]

Zhuang, J. P.

Electron. Lett.

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

IEEE J. Quantum Electron.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
[CrossRef]

IEEE Photon. J.

Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

Y. Dong, Z. Li, X. Tian, Q. Wang, H. He, C. Liu, Y. Wang, W. Hu, and T. H. Cheng, IEEE Photon. Technol. Lett. 19, 1236 (2007).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, IEEE Photon. Technol. Lett. 14, 1599 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, IEEE Trans. Microwave Theory Tech. 54, 2181 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Prog. Quantum Electron.

S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for the present study. LD, laser diode; TL, tunable laser; PA, power adjuster; PC, polarization controller; C, circulator; EM, external modulator; PG, pattern generator; M, mixer; OSA, optical spectrum analyzer; MSA, microwave spectrum analyzer; PD, photodiode; ET, error tester; LPF, low-pass filter.

Fig. 2.
Fig. 2.

(a) Optical spectra of P1 dynamics (black curve), MM input (red curve), and MM output (blue curve) at (ξi,fi)=(1.1,21GHz). For the sake of clear visibility, curves are separated from each other. The X axis is relative to the free-running frequency of the injected laser. (b) Microwave spectra of (a), centering at 35 GHz with a 30 kHz resolution. When measuring the microwave linewidth, the highest resolution of 1 Hz is used.

Fig. 3.
Fig. 3.

(a) Power of optical carriers (squares), lower modulation sidebands (triangles), and upper modulation sidebands (circles) for MM inputs (open symbols) and MM outputs (filled symbols) as a function of input SCR. (b) Output SCR and microwave power for MM outputs (filled symbols), and microwave power for MM inputs (open symbols) in terms of input SCR. All inputs are kept at ξi=1.1, fi=21GHz, and fm=35GHz.

Fig. 4.
Fig. 4.

(a) Microwave gain and (b) phase noise variance ratio in terms of input SCR (circles) for (ξi,fi,fm)=(1.1,21GHz,35GHz) and in terms of fm (triangles) under a fixed input SCR of 35dB. The output SCR as a function of fm (squares) is also shown in (a).

Fig. 5.
Fig. 5.

Spectra of downconverted data for input SCR equal to (a) 15dB and (b) 20dB. Both operating conditions are kept at (ξi,fi,fm)=(1.1,21GHz,35GHz) with a bit rate of 1.25Gbits/s and a bit sequence of 2311.

Fig. 6.
Fig. 6.

(a) BER in terms of received optical power for MM inputs (open symbols) and MM outputs (filled symbols) at input SCR of 15dB (circles) and 20dB (squares). (b), (c) Eye diagrams for open and filled squares in (a), respectively, at BER=109. All inputs are kept at ξi=1.1, fi=21GHz, and fm=35GHz with a bit rate of 1.25Gbits/s and a bit sequence of 2311.

Metrics