Abstract

Low-threshold, efficient optical parametric generation at 4.64μm is demonstrated using CdSiP2 nonlinear crystal pumped by 150 ps Raman shifted pump pulses at 1198 nm in noncritical configuration at 1 kHz repetition rate. Maximum single pulse idler energy of 6 μJ and total conversion efficiency of 30% are achieved. Seeding at the signal wavelength with a distributed feedback laser diode enables 25 fold narrowing of the bandwidths down to 10GHz, resulting in a Fourier product of 1 for the 100ps long signal (1615 nm) and idler (4.64 μm) pulses.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, Proc. SPIE 7197, 71970M (2009).
    [CrossRef]
  2. V. Petrov, P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, Opt. Lett. 34, 2399 (2009).
    [CrossRef]
  3. V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, Opt. Lett. 35, 1230 (2010).
    [CrossRef]
  4. G. Marchev, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, P. G. Schunemann, and K. T. Zawilski, Opt. Commun. 291, 326 (2013).
    [CrossRef]
  5. O. Chalus, P. G. Schunemann, K. T. Zawilski, J. Biegert, and M. Ebrahim-Zadeh, Opt. Lett. 35, 4142 (2010).
    [CrossRef]
  6. S. Chaitanya Kumar, M. Jelínek, M. Baudisch, K. T. Zawilski, P. G. Schunemann, V. Kubeček, J. Biegert, and M. Ebrahim-Zadeh, Opt. Express 20, 15703 (2012).
    [CrossRef]
  7. S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, Opt. Lett. 36, 3236 (2011).
    [CrossRef]
  8. A. Peremans, D. Lis, F. Cecchet, P. G. Schunemann, K. T. Zawilski, and V. Petrov, Opt. Lett. 34, 3053 (2009).
    [CrossRef]
  9. G. Marchev, A. Tyazhev, V. Petrov, P. G. Schunemann, K. T. Zawilski, G. Stöppler, and M. Eichhorn, Opt. Lett. 37, 740 (2012).
    [CrossRef]
  10. A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, Appl. Phys. B 98, 737 (2010).
    [CrossRef]
  11. G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, Opt. Lett. 37, 3219 (2012).
    [CrossRef]
  12. A. Agnesi, E. Caracciolo, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 107, 691 (2012).
    [CrossRef]

2013 (1)

G. Marchev, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, P. G. Schunemann, and K. T. Zawilski, Opt. Commun. 291, 326 (2013).
[CrossRef]

2012 (4)

2011 (1)

2010 (3)

2009 (3)

Agnesi, A.

G. Marchev, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, P. G. Schunemann, and K. T. Zawilski, Opt. Commun. 291, 326 (2013).
[CrossRef]

G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, Opt. Lett. 37, 3219 (2012).
[CrossRef]

A. Agnesi, E. Caracciolo, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 107, 691 (2012).
[CrossRef]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, Opt. Lett. 36, 3236 (2011).
[CrossRef]

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, Appl. Phys. B 98, 737 (2010).
[CrossRef]

Baudisch, M.

Biegert, J.

Caracciolo, E.

A. Agnesi, E. Caracciolo, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 107, 691 (2012).
[CrossRef]

Carrà, L.

A. Agnesi, E. Caracciolo, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 107, 691 (2012).
[CrossRef]

Cecchet, F.

Chaitanya Kumar, S.

Chalus, O.

Dallocchio, P.

Ebrahim-Zadeh, M.

Eichhorn, M.

Jelínek, M.

Kubecek, V.

Lis, D.

Marchev, G.

Noack, F.

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, Proc. SPIE 7197, 71970M (2009).
[CrossRef]

Peremans, A.

Petrov, V.

Piccoli, R.

Pirzio, F.

G. Marchev, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, P. G. Schunemann, and K. T. Zawilski, Opt. Commun. 291, 326 (2013).
[CrossRef]

G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, Opt. Lett. 37, 3219 (2012).
[CrossRef]

A. Agnesi, E. Caracciolo, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 107, 691 (2012).
[CrossRef]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, Opt. Lett. 36, 3236 (2011).
[CrossRef]

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, Appl. Phys. B 98, 737 (2010).
[CrossRef]

Pollak, T. M.

Reali, G.

G. Marchev, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, P. G. Schunemann, and K. T. Zawilski, Opt. Commun. 291, 326 (2013).
[CrossRef]

G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, Opt. Lett. 37, 3219 (2012).
[CrossRef]

A. Agnesi, E. Caracciolo, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 107, 691 (2012).
[CrossRef]

S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, Opt. Lett. 36, 3236 (2011).
[CrossRef]

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, Appl. Phys. B 98, 737 (2010).
[CrossRef]

Schunemann, P.

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, Proc. SPIE 7197, 71970M (2009).
[CrossRef]

Schunemann, P. G.

Stöppler, G.

Tunchev, I.

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, Proc. SPIE 7197, 71970M (2009).
[CrossRef]

Tyazhev, A.

Zawilski, K.

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, Proc. SPIE 7197, 71970M (2009).
[CrossRef]

Zawilski, K. T.

Appl. Phys. B (2)

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, Appl. Phys. B 98, 737 (2010).
[CrossRef]

A. Agnesi, E. Caracciolo, L. Carrà, F. Pirzio, and G. Reali, Appl. Phys. B 107, 691 (2012).
[CrossRef]

Opt. Commun. (1)

G. Marchev, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, P. G. Schunemann, and K. T. Zawilski, Opt. Commun. 291, 326 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Proc. SPIE (1)

V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, Proc. SPIE 7197, 71970M (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of the Raman laser-pumped OPG. M1, mirror with polarization-dependent reflectivity; HWP, half-wave plates; OI, optical isolator; A, variable size aperture; D, seed diode; BM1 and BM2, dichroic mirrors; TR, total reflectors; L1, 15 cm lens; L2, 100 cm lens; L3, 10 cm BaF2 lens; F, 2.3 μm cut-on filter; PM, power meter.

Fig. 2.
Fig. 2.

Input–output characteristics of the CSP OPG in double pass. Output energies are corrected for F, L3, and BM2 (see Fig. 1).

Fig. 3.
Fig. 3.

(a) Unseeded (blue line) and seeded (sharp red line) OPG signal spectra and (b) pump (black solid line), seed diode (black-dashed line), and amplified signal (red line) spectra. The seed spectral width corresponds to the instrumental response of the AQ6317B (Ando Electric) spectrum analyzer.

Fig. 4.
Fig. 4.

Autocorrelation traces for signal (blue dots) at 1615 nm and idler (red squares) at 4.64 μm with corresponding Gaussian fits, measured by SH generation in 1 mm BBO and 4 mm GaSe (both type-I) nonlinear crystals, respectively.

Metrics