Abstract

We show that field-flattened strands may be added to and arbitrarily positioned within a field-flattened shell to create patterned, flattened modes. Patterning does not alter the effective index or flatness of the flattened mode but does alter the characteristics of other modes; we show that it can improve a flattened mode’s bend performance significantly. Patterning provides a new and potentially valuable waveguide design tool that may lead to higher-power transport and laser fibers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ghatak, I. C. Goyal, and R. Jindal, Proc. SPIE 3666, 40 (1998).
  2. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).
  3. L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).
  4. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, Opt. Lett. 34, 2876 (2009).
  5. X. Ma, C. Liu, G. Chang, and A. Galvanauskas, Opt. Express 19, 26515 (2011).
  6. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, Opt. Express 17, 8962 (2009).
  7. M. J. Messerly, P. H. Pax, J. W. Dawson, R. J. Beach, and J. E. Heebner, Opt. Express 21, 12683 (2013).
  8. H. A. Macleod, Thin Film Optical Filters (Macmillan, 1986).
  9. A. Sridharan, P. Pax, J. Heebner, D. Drachenberg, J. Armstrong, and J. Dawson, Opt. Express 20, 28792 (2012).
  10. J. Fini, Opt. Express 14, 69 (2006).
  11. R. Schermer, Opt. Express 15, 15674 (2007).
  12. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Taniagwa, K. Saitoh, and M. Koshiba, Opt. Lett. 36, 4626 (2011).
  13. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

2013 (1)

2012 (2)

A. Sridharan, P. Pax, J. Heebner, D. Drachenberg, J. Armstrong, and J. Dawson, Opt. Express 20, 28792 (2012).

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

2011 (2)

2009 (3)

2008 (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

2007 (1)

2006 (1)

1998 (1)

A. K. Ghatak, I. C. Goyal, and R. Jindal, Proc. SPIE 3666, 40 (1998).

Abdou-Ahmed, M.

Arakawa, Y.

Armstrong, J.

Beach, R. J.

Bennett, C. R.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).

Biancalana, F.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

Chang, G.

Conti, C.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

Dawson, J.

Dawson, J. W.

Dong, L.

Drachenberg, D.

Fermann, M. E.

Fini, J.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Fu, L.

Galvanauskas, A.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Ghatak, A. K.

A. K. Ghatak, I. C. Goyal, and R. Jindal, Proc. SPIE 3666, 40 (1998).

Goyal, I. C.

A. K. Ghatak, I. C. Goyal, and R. Jindal, Proc. SPIE 3666, 40 (1998).

Graf, T.

Heebner, J.

Heebner, J. E.

Jindal, R.

A. K. Ghatak, I. C. Goyal, and R. Jindal, Proc. SPIE 3666, 40 (1998).

Kang, M. S.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

Koshiba, M.

Lee, H. W.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

Liu, C.

Ma, X.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Macmillan, 1986).

Marcinkevicius, A.

Matsuo, S.

McKay, H. A.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Messerly, M. J.

Michaille, L.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Ohta, M.

Pax, P.

Pax, P. H.

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Russell, P. St. J.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

Saitoh, K.

Sasaki, Y.

Schermer, R.

Shepherd, T. J.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).

Sridharan, A.

Suzuki, S.

Takenaga, K.

Taniagwa, S.

Taylor, D. M.

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).

Vogel, M.

Voss, A.

Weiss, T.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

Wong, G. K. L.

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, IEEE J. Sel. Top. Quantum Electron. 15, 328 (2009).

Laser Photon. Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photon. Rev. 2, 429 (2008).

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

A. K. Ghatak, I. C. Goyal, and R. Jindal, Proc. SPIE 3666, 40 (1998).

Science (1)

G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, Science 27, 446 (2012).

Other (1)

H. A. Macleod, Thin Film Optical Filters (Macmillan, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Gray-scale depiction of the transverse refractive index profile of a notional fiber consisting of a strand centered in a shell; lighter shades designate higher indices. (b) Notional radial profile of (a) showing the extent of the strand and shell: (i) stitching layer that makes up the strand’s coating and (ii) termination layers that make up the shell’s coating. Two regions have an index nflat, and the cladding index is nclad.

Fig. 2.
Fig. 2.

Field distributions of several modes of the fiber composed of the shell and a copy of strand 1 of Table 1. Blue and red represent different polarities of the field, and the color’s depth designates its relative amplitude. The effective index decreases from the left column to the right, and the strand’s shift increases from the top row to the bottom. All modes are scaled as the one on the lower left, and v is dimensionless.

Fig. 3.
Fig. 3.

Changes in the dimensionless area-spacing product ΔΘeff [Eq. (4)] when the strand is shifted from the center to 0.90π. The Θeffs are based on the effective area of the flattened mode. White and gray fills designate an increase or decrease in Θeff, and the circle designates the flattened mode (LP02).

Fig. 4.
Fig. 4.

Field distributions of representative modes of the fiber composed of the shell and seven copies of strand 2 of Table 1. On bending, the flattened mode, (i), tends to couple to mode (l). The color scheme follows Fig. 2, the scale of (k) holds for all modes, and v is dimensionless.

Fig. 5.
Fig. 5.

Change in mode area versus bending for a fiber consisting of the shell of Table 1 and for the fiber of Fig. 4 (these have the same shell). Graph: retained effective area versus bend strength (dimensionless quantities). Insets: computed irradiance distributions for unbent modes and modes bent at a strength of 0.23. Insets (i) and (ii) are for the shell-only fiber and (iii) and (iv) are for the shell-and-strands fiber. The value of NAflat for the shell-and-strands fiber is slightly smaller than for the shell-only fiber to make their unbent areas match (strands otherwise reduce the area).

Fig. 6.
Fig. 6.

Calculated change in modal area versus wavelength. Graph: retained area fraction versus relative wavelength shift for the design of Fig. 4 (λ0 is the design’s center wavelength). Insets: computed irradiance distributions (gray scale with lighter shades designating higher irradiance): (i) 74% retained at Δλ/λ0=5%, (ii) 100% at λ0, and 80% at Δλ/λ0=+5%. (ii) and (iii) have the same scaling as (i).

Tables (2)

Tables Icon

Table 1. Shell and Strand Designs for the Examples of this Lettera

Tables Icon

Table 2. Designations and the Dimensionless Area-Spacing Products, Θeff [Eq. (4)], for the modes of Fig. 4a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

NAflat=nflat2nclad2,
v=2πNAflatr/λ,
η(v)=[n2(v)nclad2]/NAflat2,
Θeff=(neff2nclad2)Aeff,0/λ2,
Aunbent3/2/λ2R,

Metrics