Abstract

A Brillouin-based distributed optical fiber dynamic strain sensor is described which converts strain-induced Brillouin frequency shift into optical intensity variations by using an imbalanced Mach–Zhender interferometer. A 3×3 coupler is used at the output of this interferometer to permit differentiate and cross multiply demodulation. The demonstrated sensor is capable of probing dynamic strain disturbances over 2 km of sensing length every 0.5 s up to a strain of 10 mε with an accuracy of ±50με and spatial resolution of 1.3 m.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, Z. Y. He, and K. Hotate, Opt. Lett. 31, 2526 (2006).
    [CrossRef]
  2. M. Belal, Y. T. Cho, M. Ibsen, and T. P. Newson, Meas. Sci. Technol. 21, 015204 (2010).
    [CrossRef]
  3. M. Belal and T. P. Newson, Opt. Lett. 36, 4728 (2011).
    [CrossRef]
  4. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, J. Opt. Soc. Am. B 22, 1321 (2005).
    [CrossRef]
  5. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, Meas. Sci. Technol. 15, 1544 (2004).
    [CrossRef]
  6. K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
    [CrossRef]
  7. K. Y. Song, M. Kishi, Z. Y. He, and K. Hotate, Opt. Lett. 36, 2062 (2011).
    [CrossRef]
  8. R. Bernini, A. Minardo, and L. Zeni, Opt. Lett. 34, 2613 (2009).
    [CrossRef]
  9. Y. Peled, A. Motil, I. Kressel, and M. Tur, Opt. Express 21, 10697 (2013).
    [CrossRef]
  10. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
    [CrossRef]
  11. E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
    [CrossRef]
  12. S. M. Maughan, H. H. Kee, and T. P. Newson, Opt. Lett. 26, 331 (2001).
    [CrossRef]
  13. H. H. Kee, G. P. Lees, and T. P. Newson, Opt. Lett. 25, 695 (2000).
    [CrossRef]
  14. C. B. Cameron, R. M. Keolian, and S. L. Garrett, Proceedings of the 34th Midwest Symposium on Circuits and Systems (1992), Vol. 2, p. 666.
  15. R. G. Priest, IEEE J. Quantum Electron. 18, 1601 (1982).
    [CrossRef]
  16. M. Belal and T. P. Newson, J. Lightwave Technol. 30, 1250 (2012).
    [CrossRef]
  17. A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
    [CrossRef]

2013 (2)

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

Y. Peled, A. Motil, I. Kressel, and M. Tur, Opt. Express 21, 10697 (2013).
[CrossRef]

2012 (1)

2011 (2)

2010 (1)

M. Belal, Y. T. Cho, M. Ibsen, and T. P. Newson, Meas. Sci. Technol. 21, 015204 (2010).
[CrossRef]

2009 (1)

2006 (1)

2005 (1)

2004 (1)

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, Meas. Sci. Technol. 15, 1544 (2004).
[CrossRef]

2003 (1)

K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
[CrossRef]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

1982 (1)

R. G. Priest, IEEE J. Quantum Electron. 18, 1601 (1982).
[CrossRef]

Alahbabi, M. N.

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, J. Opt. Soc. Am. B 22, 1321 (2005).
[CrossRef]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, Meas. Sci. Technol. 15, 1544 (2004).
[CrossRef]

Bartelt, H.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
[CrossRef]

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

M. Belal and T. P. Newson, J. Lightwave Technol. 30, 1250 (2012).
[CrossRef]

M. Belal and T. P. Newson, Opt. Lett. 36, 4728 (2011).
[CrossRef]

M. Belal, Y. T. Cho, M. Ibsen, and T. P. Newson, Meas. Sci. Technol. 21, 015204 (2010).
[CrossRef]

Bernini, R.

Cameron, C. B.

C. B. Cameron, R. M. Keolian, and S. L. Garrett, Proceedings of the 34th Midwest Symposium on Circuits and Systems (1992), Vol. 2, p. 666.

Cho, Y. T.

M. Belal, Y. T. Cho, M. Ibsen, and T. P. Newson, Meas. Sci. Technol. 21, 015204 (2010).
[CrossRef]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, J. Opt. Soc. Am. B 22, 1321 (2005).
[CrossRef]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, Meas. Sci. Technol. 15, 1544 (2004).
[CrossRef]

Garrett, S. L.

C. B. Cameron, R. M. Keolian, and S. L. Garrett, Proceedings of the 34th Midwest Symposium on Circuits and Systems (1992), Vol. 2, p. 666.

Geinitz, E.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
[CrossRef]

He, Z. Y.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Hotate, K.

Ibsen, M.

M. Belal, Y. T. Cho, M. Ibsen, and T. P. Newson, Meas. Sci. Technol. 21, 015204 (2010).
[CrossRef]

Jetschke, S.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
[CrossRef]

Kee, H. H.

Keolian, R. M.

C. B. Cameron, R. M. Keolian, and S. L. Garrett, Proceedings of the 34th Midwest Symposium on Circuits and Systems (1992), Vol. 2, p. 666.

Kishi, M.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Kressel, I.

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Lees, G. P.

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

Maughan, S. M.

Minardo, A.

Motil, A.

Newson, T. P.

Ong, S. S. L.

K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

Peled, Y.

Priest, R. G.

R. G. Priest, IEEE J. Quantum Electron. 18, 1601 (1982).
[CrossRef]

Ropke, U.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
[CrossRef]

Schroter, S.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Song, K. Y.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Tur, M.

Willsch, R.

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
[CrossRef]

Zeni, L.

IEEE J. Quantum Electron. (1)

R. G. Priest, IEEE J. Quantum Electron. 18, 1601 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

J. Lightwave Technol. (2)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

M. Belal and T. P. Newson, J. Lightwave Technol. 30, 1250 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (4)

M. Belal, Y. T. Cho, M. Ibsen, and T. P. Newson, Meas. Sci. Technol. 21, 015204 (2010).
[CrossRef]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, Meas. Sci. Technol. 15, 1544 (2004).
[CrossRef]

E. Geinitz, S. Jetschke, U. Ropke, S. Schroter, R. Willsch, and H. Bartelt, Meas. Sci. Technol. 10, 112 (1999).
[CrossRef]

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Other (1)

C. B. Cameron, R. M. Keolian, and S. L. Garrett, Proceedings of the 34th Midwest Symposium on Circuits and Systems (1992), Vol. 2, p. 666.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the MZI filter with a 3×3 coupler as the output coupler. The output of the photodetectors vary with varying incident wavelength. (b) Transfer function of MZI for ΔL=60cm and λ=1533.8064nm.

Fig. 2.
Fig. 2.

Experimental setup. DFB-LD, distributed-feedback laser source; IS, isolator; EDFA, erbium-doped fiber amplifier; PD, photodetector; FBG, fiber Bragg grating; TFBG, tunable fiber Bragg grating; C, circulator; OSC, oscilloscope.

Fig. 3.
Fig. 3.

Three-dimensional plot of FFT of the DCM demodulator output for the 14401610m section of the sensing fiber.

Fig. 4.
Fig. 4.

DCM demodulator output of the FUT at 1520 m.

Fig. 5.
Fig. 5.

Applied strain to the fiber versus sensor output for 0.1 Hz triangular signal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I1=A3[1+cos(ΔL2πλ+2π3)],I2=A3[1+cos(ΔL2πλ)],I3=A3[1+cos(ΔL2πλ2π3)],
Φ=f(I1,I2,I3)=ΔL2πλ=ΔL2π·νcn,

Metrics