Abstract

Potential white light-emitting diode (LED) phosphor SrGa2S4, which remains superfluous due to its unstable nature in the presence of moisture, was successfully integrated in a high-power white LED system by developing a glass-based phosphor plate. A glass system with softening temperature at around 600°C, which lies far below the possible decomposition temperature of the sulfide phosphor, provides a stable shield. Physical properties such as thermal stability, transparency, and lower porosity along with chemical stability under operating conditions of the LEDs ensure long-term operability. H2S emission due to the decomposition of sulfide phosphors, which leads to corrosion of LED electrodes, was contained using the developed plate. Higher thermal resistivity of the developed glass system in comparison with conventional resins ensures lower thermal quenching of the luminescence and better color purity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
    [CrossRef]
  2. J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
    [CrossRef]
  3. A. Okuno, Y. Miyawaki, N. Oyama, and D. Wang, in International Conference on Electronic Materials and Packaging (EMAP, 2006), pp. 1–5.
  4. S. C. Allen and A. J. Steckl, Appl. Phys. Lett. 92, 143309 (2008).
    [CrossRef]
  5. Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, Opt. Lett. 37, 3276 (2012).
    [CrossRef]
  6. Y. R. Do, J. W. Bae, Y. Kim, and H.-G. Yang, Bull. Korean Chem. Soc. 21, 295 (2000).

2012 (2)

J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
[CrossRef]

Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, Opt. Lett. 37, 3276 (2012).
[CrossRef]

2008 (1)

S. C. Allen and A. J. Steckl, Appl. Phys. Lett. 92, 143309 (2008).
[CrossRef]

2004 (1)

N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
[CrossRef]

2000 (1)

Y. R. Do, J. W. Bae, Y. Kim, and H.-G. Yang, Bull. Korean Chem. Soc. 21, 295 (2000).

Allen, S. C.

S. C. Allen and A. J. Steckl, Appl. Phys. Lett. 92, 143309 (2008).
[CrossRef]

Bae, J. W.

Y. R. Do, J. W. Bae, Y. Kim, and H.-G. Yang, Bull. Korean Chem. Soc. 21, 295 (2000).

Cheong, S. H.

J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
[CrossRef]

Chung, W. J.

Deng, L.

N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
[CrossRef]

Do, Y. R.

Y. R. Do, J. W. Bae, Y. Kim, and H.-G. Yang, Bull. Korean Chem. Soc. 21, 295 (2000).

Freyssinier, J. P.

N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
[CrossRef]

Gu, Y.

N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
[CrossRef]

Han, J. Y.

J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
[CrossRef]

Heo, J.

Im, W. B.

Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, Opt. Lett. 37, 3276 (2012).
[CrossRef]

J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
[CrossRef]

Jeon, D. Y.

J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
[CrossRef]

Kim, D.

J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
[CrossRef]

Kim, Y.

Y. R. Do, J. W. Bae, Y. Kim, and H.-G. Yang, Bull. Korean Chem. Soc. 21, 295 (2000).

Lee, G.-y.

J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
[CrossRef]

Lee, J. S.

Lee, Y. K.

Miyawaki, Y.

A. Okuno, Y. Miyawaki, N. Oyama, and D. Wang, in International Conference on Electronic Materials and Packaging (EMAP, 2006), pp. 1–5.

Narendran, N.

N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
[CrossRef]

Okuno, A.

A. Okuno, Y. Miyawaki, N. Oyama, and D. Wang, in International Conference on Electronic Materials and Packaging (EMAP, 2006), pp. 1–5.

Oyama, N.

A. Okuno, Y. Miyawaki, N. Oyama, and D. Wang, in International Conference on Electronic Materials and Packaging (EMAP, 2006), pp. 1–5.

Steckl, A. J.

S. C. Allen and A. J. Steckl, Appl. Phys. Lett. 92, 143309 (2008).
[CrossRef]

Wang, D.

A. Okuno, Y. Miyawaki, N. Oyama, and D. Wang, in International Conference on Electronic Materials and Packaging (EMAP, 2006), pp. 1–5.

Yang, H.-G.

Y. R. Do, J. W. Bae, Y. Kim, and H.-G. Yang, Bull. Korean Chem. Soc. 21, 295 (2000).

Yu, H.

N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

S. C. Allen and A. J. Steckl, Appl. Phys. Lett. 92, 143309 (2008).
[CrossRef]

Bull. Korean Chem. Soc. (1)

Y. R. Do, J. W. Bae, Y. Kim, and H.-G. Yang, Bull. Korean Chem. Soc. 21, 295 (2000).

J. Cryst. Growth (1)

N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, J. Cryst. Growth 268, 449 (2004).
[CrossRef]

J. Mater. Chem. (1)

J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G.-y. Lee, and D. Y. Jeon, J. Mater. Chem. 22, 5374 (2012).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. Okuno, Y. Miyawaki, N. Oyama, and D. Wang, in International Conference on Electronic Materials and Packaging (EMAP, 2006), pp. 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM image of PiG. Inset shows energy dispersive spectra of specific points (S1), mostly the phosphor (S2) glass matrix.

Fig. 2.
Fig. 2.

Transmittance spectra of PiG synthesized at various temperatures. Inset shows digital photograph of PiGs with different thicknesses.

Fig. 3.
Fig. 3.

PLE and PL of (a) sulfide phosphor powder and (b) PiG before and after humidity test.

Fig. 4.
Fig. 4.

(a) EL spectra of PiG-LED system under operating current ranging from 200 to 400 mA. (b) CIE color coordinate of system. Inset of (a) shows the schematic diagram of the arrangement (left) and LED under operation (right).

Fig. 5.
Fig. 5.

Temperature-dependent PL of PiG in comparison with powder phosphor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SrGa2S4+4H2OSrO+Ga2O3+4H2S

Metrics