Abstract

Wideband switchable diode-like transmission can be exhibited by an asymmetric dielectric photonic crystal, when the host medium is changed from air to a coherent atomic gas (CAG), a strongly dispersive medium. Significant modification of diffraction-enabled one-way transmission due to the CAG is possible in both frequency and incidence-angle domains in the short-wave infrared regime. In particular, new one-way and high-contrast passbands, which are as much as 1.0 THz in bandwidth, can appear at fixed incidence angle within a stop band of the CAG-free structure and tuned by varying the oscillator strength of the CAG. These passbands correspond to relatively small, either positive or negative, values of the dielectric susceptibility of the CAG.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, Opt. Express 16, 19504 (2008).
    [CrossRef]
  2. H. Wanare, J. Nanophoton. 4, 040304 (2010).
  3. A. E. Serebryannikov and A. Lakhtakia, J. Opt. Soc. Am. B 29, 328 (2012).
    [CrossRef]
  4. A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009).
  5. J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012).
    [CrossRef]
  6. A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, Opt. Express 20, 14980 (2012).
    [CrossRef]
  7. A. E. Serebryannikov, E. Colak, A. O. Cakmak, and E. Ozbay, Opt. Lett. 37, 4844 (2012).
    [CrossRef]
  8. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).
    [CrossRef]
  9. A. E. Serebryannikov and A. Lakhtakia, Microw. Opt. Technol. Lett. 55, 1248 (2013).
    [CrossRef]
  10. S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
    [CrossRef]
  11. K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
    [CrossRef]
  12. J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
    [CrossRef]
  13. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Sec. 7.3.
  14. T. Magath and A. E. Serebryannikov, J. Opt. Soc. Am. A 22, 2405 (2005).
    [CrossRef]
  15. A. E. Serebryannikov, K. B. Alici, T. Magath, A. O. Cakmak, and E. Ozbay, Phys. Rev. A 86, 053835 (2012).
    [CrossRef]

2013 (1)

A. E. Serebryannikov and A. Lakhtakia, Microw. Opt. Technol. Lett. 55, 1248 (2013).
[CrossRef]

2012 (5)

A. E. Serebryannikov, K. B. Alici, T. Magath, A. O. Cakmak, and E. Ozbay, Phys. Rev. A 86, 053835 (2012).
[CrossRef]

A. E. Serebryannikov and A. Lakhtakia, J. Opt. Soc. Am. B 29, 328 (2012).
[CrossRef]

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012).
[CrossRef]

A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, Opt. Express 20, 14980 (2012).
[CrossRef]

A. E. Serebryannikov, E. Colak, A. O. Cakmak, and E. Ozbay, Opt. Lett. 37, 4844 (2012).
[CrossRef]

2010 (1)

H. Wanare, J. Nanophoton. 4, 040304 (2010).

2009 (1)

A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009).

2008 (1)

2005 (1)

1998 (1)

J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
[CrossRef]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef]

1981 (1)

Alici, K. B.

A. E. Serebryannikov, K. B. Alici, T. Magath, A. O. Cakmak, and E. Ozbay, Phys. Rev. A 86, 053835 (2012).
[CrossRef]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef]

Cakmak, A. O.

Chakrabarti, S.

Colak, E.

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef]

Gaylord, T. K.

Harris, S. E.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef]

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef]

Kim, H. W.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012).
[CrossRef]

Kim, Y. Y.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012).
[CrossRef]

Lakhtakia, A.

A. E. Serebryannikov and A. Lakhtakia, Microw. Opt. Technol. Lett. 55, 1248 (2013).
[CrossRef]

A. E. Serebryannikov and A. Lakhtakia, J. Opt. Soc. Am. B 29, 328 (2012).
[CrossRef]

Ma, P. S.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012).
[CrossRef]

Magath, T.

A. E. Serebryannikov, K. B. Alici, T. Magath, A. O. Cakmak, and E. Ozbay, Phys. Rev. A 86, 053835 (2012).
[CrossRef]

T. Magath and A. E. Serebryannikov, J. Opt. Soc. Am. A 22, 2405 (2005).
[CrossRef]

Marangos, J. P.

J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
[CrossRef]

Moharam, M. G.

Oh, J. H.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012).
[CrossRef]

Ozbay, E.

Ramakrishna, S. A.

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Sec. 7.3.

Serebryannikov, A. E.

Seung, H. M.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012).
[CrossRef]

Wanare, H.

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Sec. 7.3.

Appl. Phys. Lett. (1)

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 100, 213503 (2012).
[CrossRef]

J. Mod. Opt. (1)

J. P. Marangos, J. Mod. Opt. 45, 471 (1998).
[CrossRef]

J. Nanophoton. (1)

H. Wanare, J. Nanophoton. 4, 040304 (2010).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

A. E. Serebryannikov and A. Lakhtakia, Microw. Opt. Technol. Lett. 55, 1248 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

A. E. Serebryannikov, K. B. Alici, T. Magath, A. O. Cakmak, and E. Ozbay, Phys. Rev. A 86, 053835 (2012).
[CrossRef]

Phys. Rev. B (1)

A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009).

Phys. Rev. Lett. (2)

S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef]

Other (1)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Sec. 7.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of a structure containing a square-lattice PhC with one uniform and one periodically nonuniform pupil. The directions of incidence for forward and backward transmission are also shown.

Fig. 2.
Fig. 2.

(a) Re[εCAG] (solid blue line) and Im[εCAG] (dashed red line) as functions of kL in the close vicinity of ω=ω1, when ω1L/c=7.45. (b) Vertically magnified view of (a).

Fig. 3.
Fig. 3.

Modal transmittances (a), (c) Tm and (b), (d) Tm versus kL in cases (a), (b) without and (c), (d) with CAG, when ω1L/c=7.45, K=1, d/a=0.4, εr=5.8, N=5, and θ=30°. (a), (b) Dark blue solid and (c), (d) blue solid lines: m=0; (a), (b) red dashed and (c), (d) magenta dashed lines: m=1.

Fig. 4.
Fig. 4.

Distribution of electric field (a.u.) within a grating period when kL=7.41 and the other parameters are the same as in Fig. 3. The abscissa (x) and ordinate (y) vary from 0 to L and from 0 to Na, respectively. The centroids of the rods are located at xp=a/2+(p1)a (p=1, 2) and yq=a/2+(q1)a (q=1,2,N). (a) OFF state, forward transmission; (b) ON state, forward transmission; (c) OFF state, backward transmission; and (d) ON state, backward transmission. The color scale is not the same for all four plots.

Fig. 5.
Fig. 5.

Same as Fig. 4, but for kL=7.4578.

Fig. 6.
Fig. 6.

Modal transmittance (a) T1 versus γL where γ=(ωω1)/c, and (b) T1 versus kL, in the ON state, when d/a=0.4, εr=5.8, N=5, and θ=30°. (a) Results for ω1L/c=7.45, 7.5, and 7.6 are shown by solid, dashed, and dotted lines, respectively, for K=1 and m=1. (b) Results when K=1, 0.5, and 0.2 are shown by solid, dashed, and dotted lines, respectively, when ω1L/c=7.45 and m=1.

Fig. 7.
Fig. 7.

Modal transmittances (a) Tm and (b) Tm versus kL in the ON state; ω1L/c=7.2, K=1, d/a=0.4, εr=11.4, N=12, and θ=43°. Blue solid lines: m=0; red dashed lines: m=1.

Fig. 8.
Fig. 8.

Modal transmittance Tm versus θ in cases (b), (d), (f) with and (a), (c), (e) without CAG; (a), (b) ω=7.4578c/L, εr=5.8, N=5, and ω1L/c=7.45; (c), (d) ω=7.475c/L, εr=5.8, and N=5, and ω1L/c=7.45; (e), (f) ω=7.198c/L, εr=11.4, and N=12, and ω1L/c=7.2. For all cases, d/a=0.4 and K=1. Solid lines: m=1; dashed lines: m=0; dashed–dotted lines: m=2. Rectangles in panels (b), (d), (f) indicate extension of one-way ON-state passbands as compared to the OFF-state ones (T=T1>0 and T0) on the θ axis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

εCAG=1+κ(ω1ω)/[(ω1ω)2(Ωc/2)2iΓ(ω1ω)],

Metrics