Abstract

The mismatch in film thickness and incident angle between reflectance and transmittance extrema due to the presence of lossy film(s) is investigated toward the maximum transmittance design in the active region of solar cells. Using a planar air/lossy film/silicon double-interface geometry illustrates important and quite opposite mismatch behaviors associated with TE and TM waves. In a typical thin-film CIGS solar cell, mismatches contributed by TM waves in general dominate. The angular mismatch is at least 10° in about 37%–53% of the spectrum, depending on the thickness combination of all lossy interlayers. The largest thickness mismatch of a specific interlayer generally increases with the thickness of the layer itself. Antireflection coating designs for solar cells should therefore be optimized in terms of the maximum transmittance into the active region, even if the corresponding reflectance is not at its minimum.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
    [CrossRef]
  2. P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012).
    [CrossRef]
  3. S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, Opt. Express 21, A157 (2013).
    [CrossRef]
  4. Z. Qiao, C. Agashe, and D. Mergel, Thin Solid Films 496, 520 (2006).
    [CrossRef]
  5. K. Ellmer, A. Klein, and B. Rech, ed., Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, 2010).
  6. J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, in 2009 34th IEEE Photovoltaic Specialists Conference (PVSE) (IEEE, 2009), p. 001982.
  7. P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, J. Appl. Phys. 94, 879 (2003).
    [CrossRef]
  8. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  9. N. G. Dhere, Sol. Energy Mater. Sol. Cells 91, 1376 (2007).
    [CrossRef]

2013

2012

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012).
[CrossRef]

2007

N. G. Dhere, Sol. Energy Mater. Sol. Cells 91, 1376 (2007).
[CrossRef]

2006

Z. Qiao, C. Agashe, and D. Mergel, Thin Solid Films 496, 520 (2006).
[CrossRef]

2003

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, J. Appl. Phys. 94, 879 (2003).
[CrossRef]

Agashe, C.

Z. Qiao, C. Agashe, and D. Mergel, Thin Solid Films 496, 520 (2006).
[CrossRef]

Birkmire, R. W.

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, J. Appl. Phys. 94, 879 (2003).
[CrossRef]

Cai, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Chen, J.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, in 2009 34th IEEE Photovoltaic Specialists Conference (PVSE) (IEEE, 2009), p. 001982.

Chen, X.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Chhajed, S.

Cho, J.

Collins, R. W.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, in 2009 34th IEEE Photovoltaic Specialists Conference (PVSE) (IEEE, 2009), p. 001982.

Dhere, N. G.

N. G. Dhere, Sol. Energy Mater. Sol. Cells 91, 1376 (2007).
[CrossRef]

Gu, M.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Jia, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Kim, D.

Kim, J. K.

Li, J.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, in 2009 34th IEEE Photovoltaic Specialists Conference (PVSE) (IEEE, 2009), p. 001982.

Mergel, D.

Z. Qiao, C. Agashe, and D. Mergel, Thin Solid Films 496, 520 (2006).
[CrossRef]

Oh, S. J.

Paulson, P. D.

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, J. Appl. Phys. 94, 879 (2003).
[CrossRef]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012).
[CrossRef]

Poxson, D. J.

Qiao, Q.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Qiao, Z.

Z. Qiao, C. Agashe, and D. Mergel, Thin Solid Films 496, 520 (2006).
[CrossRef]

Saha, J. K.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Schubert, E. F.

Sestak, M. N.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, in 2009 34th IEEE Photovoltaic Specialists Conference (PVSE) (IEEE, 2009), p. 001982.

Shafarmana, W. N.

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, J. Appl. Phys. 94, 879 (2003).
[CrossRef]

Shi, Z.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012).
[CrossRef]

Stokes, N.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Tark, S. J.

Thornberry, C.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, in 2009 34th IEEE Photovoltaic Specialists Conference (PVSE) (IEEE, 2009), p. 001982.

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012).
[CrossRef]

Wang, Y.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

J. Appl. Phys.

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, J. Appl. Phys. 94, 879 (2003).
[CrossRef]

Nano Lett.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).
[CrossRef]

Nat. Commun.

P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012).
[CrossRef]

Opt. Express

Sol. Energy Mater. Sol. Cells

N. G. Dhere, Sol. Energy Mater. Sol. Cells 91, 1376 (2007).
[CrossRef]

Thin Solid Films

Z. Qiao, C. Agashe, and D. Mergel, Thin Solid Films 496, 520 (2006).
[CrossRef]

Other

K. Ellmer, A. Klein, and B. Rech, ed., Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, 2010).

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, in 2009 34th IEEE Photovoltaic Specialists Conference (PVSE) (IEEE, 2009), p. 001982.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cases under investigation (not to scale): (a) a general double-interface structure consisting of air/lossy film/transmitted region and (b) a typical CIGS solar cell with a back contact and soda-lime glass. A plane wave with wave vector k is incident upon the structure at an angle θ.

Fig. 2.
Fig. 2.

Variations of reflectance R and transmittance T with normalized film thickness tf/λn for different values of extinction coefficient κf associated with an air/lossy film/Si double-interface structure: (a) at θ=0° (polarization independent) and (b) at θ=60° for TM polarization.

Fig. 3.
Fig. 3.

Connections between tf/λn at which Rmin and Tmax occur and κf at different incident angles for (a) TE and (b) TM polarization.

Fig. 4.
Fig. 4.

Polarization-averaged mismatches in (a) CdS and (c) AZO film thickness between Rmin and Tmax with varying incident angle in a typical CIGS solar cell. Their corresponding angle-averaged thickness mismatches with varying wavelength are shown in (b) and (d), respectively.

Fig. 5.
Fig. 5.

Imaginary part of the complex permittivity associated with each constituent material (before the back contact) in a typical CIGS solar sell.

Fig. 6.
Fig. 6.

Polarization-averaged mismatches in incident angle between Rmin and Tmax as a function of the (a) CdS, (c) ZnO, and (e) the AZO film thickness in a typical CIGS solar cell. Their corresponding thickness-averaged angular mismatches with varying wavelength are shown in (b), (d), and (f), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ=(r1+r2e2γftf)/(1+r1r2e2γftf),
T=(1|Γ|2)×R[(1r2*+r2|r2|2)/Z0,f*]{R[(e2αftfr2*e2jβftf+r2e2jβftf|r2|2e2αftf)/Z0,f*]}1,

Metrics