Abstract

True time-delay line with a high resolution and wide range is proposed and demonstrated. Tunable lasers and dispersion fibers are employed to control the time delay coarsely. An optical spectrum processor is utilized to realize high-resolution time-delay control by adding a quadratic optical phase shift, which compensates the group velocity dispersion of the fiber simultaneously. A coarse tuning range of 1717 ps is realized by changing the wavelength of the optical carrier, and a high resolution of 0.67 ps is achieved by translating the symmetry axis of the quadratic phase shift.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Willians, J. Lightwave Technol. 24, 4628 (2006).
    [CrossRef]
  2. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, J. Lightwave Technol. 31, 571 (2013).
    [CrossRef]
  3. R. S. Tucker, P.-c. Ku, and C. J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005).
    [CrossRef]
  4. R. C. Hansen, Phased Array Antennas (Hoboken, 2009).
  5. S. Blais and J. Yao, J. Lightwave Technol. 27, 1147 (2009).
    [CrossRef]
  6. B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
    [CrossRef]
  7. F. Ramos, J. Marti, and V. Polo, IEEE Photon. Technol. Lett. 11, 1171 (1999).
    [CrossRef]
  8. O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, and A. Willner, Opt. Express 20, 8219 (2012).
    [CrossRef]
  9. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404 (2004).
    [CrossRef]
  10. S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, Opt. Lett. 35, 2985 (2010).
    [CrossRef]
  11. S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, Opt. Lett. 35, 523 (2010).
    [CrossRef]
  12. X. Yi, L. Li, T. X. H. Huang, and R. A. Minsian, Opt. Lett. 37, 608 (2012).
    [CrossRef]
  13. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, J. Lightwave Technol. 26, 73 (2008).
    [CrossRef]

2013

2012

2010

2009

2008

2006

A. J. Seeds and K. J. Willians, J. Lightwave Technol. 24, 4628 (2006).
[CrossRef]

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

2005

2004

1999

F. Ramos, J. Marti, and V. Polo, IEEE Photon. Technol. Lett. 11, 1171 (1999).
[CrossRef]

Abakoumov, D.

Baxter, G.

Blais, S.

Bolger, J. A.

Capmany, J.

Chang-Hasnain, C. J.

Chitgarha, M. R.

Dalmases, F.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

Duker, J. S.

Eggleton, B. J.

Frisken, S.

Fujimoto, J. G.

Gasulla, I.

Hansen, R. C.

R. C. Hansen, Phased Array Antennas (Hoboken, 2009).

Huang, H.

Huang, T. X. H.

Ibáñez-López, C.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

Jofre, L.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

Khaleghi, S.

Ko, T. H.

Kowalczyk, A.

Ku, P.-c.

Li, L.

Lloret, J.

Marti, J.

F. Ramos, J. Marti, and V. Polo, IEEE Photon. Technol. Lett. 11, 1171 (1999).
[CrossRef]

Martí, J.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

McKenzie, I.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

Mengual, T.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

Minsian, R. A.

Mora, J.

Nuccio, S. R.

Polo, V.

F. Ramos, J. Marti, and V. Polo, IEEE Photon. Technol. Lett. 11, 1171 (1999).
[CrossRef]

Poole, S.

Ramos, F.

F. Ramos, J. Marti, and V. Polo, IEEE Photon. Technol. Lett. 11, 1171 (1999).
[CrossRef]

Roelens, M. A. F.

Sales, S.

Sancho, J.

Santamaría, J.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

Seeds, A. J.

Srinivasan, V. J.

Tucker, R. S.

Tur, M.

Vez, E.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

Vidal, B.

B. Vidal, T. Mengual, C. Ibáñez-López, J. Martí, I. McKenzie, E. Vez, J. Santamaría, F. Dalmases, and L. Jofre, IEEE Photon. Technol. Lett. 18, 1200 (2006).
[CrossRef]

Wang, J.

Wang, X.

Willians, K. J.

Willner, A.

Willner, A. E.

Wojtkowski, M.

Wu, X.

Yao, J.

Yaron, L.

Yi, X.

Yilmaz, O. F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Phase-frequency response of the dispersion fiber. (b) Phase of the microwave from the (PD). Ω, the angular frequency of the microwave; θ1, the phase of the beating between the upper sideband and the carrier; θ2, the phase of the beating between the carrier and the lower sideband.

Fig. 2.
Fig. 2.

Principle of realizing high-resolution time delay control and dispersion compensation simultaneously by translating the symmetry axis of the quadratic phase correction.

Fig. 3.
Fig. 3.

Experimental setup for the dispersion compensation and high-resolution time-delay control employing a tunable laser and OSP.

Fig. 4.
Fig. 4.

Experiment result of dispersion compensation of this TTD line.

Fig. 5.
Fig. 5.

Result of this TTD line. Each line represents the time delay of one optical wavelength, and the different points on the same line stand for the time delay controlled by the OSP.

Fig. 6.
Fig. 6.

Time delay at different RF frequencies.

Fig. 7.
Fig. 7.

Jitter of the time delay. Each line represents one delay, and for each delay, 100 measurements were done.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

φ1(ω)=β0l+β1(ωω0)l+12β2(ωω0)2l,
θ1=φ1(ω0+Ω)φ1(ω0)=β1lΩ+12β2lΩ2,
θ2=φ1(ω0)φ1(ω0Ω)=β1lΩ12β2lΩ2.
θ(Ω)=12(θ1+θ2)=β1lΩ,
τ=dθ(Ω)dΩ=β1l=β2lω0+C,
φ2(ω)=12β2(ωω0ωs)2l=12β2(ωω0)2l+β2ωs(ωω0)l12β2ωs2.
φ3(ω)=φ1(ω)+φ2(ω)=β2l(ω0+ωs)(ωω0)+φc,
τ=β2l(ω0+ωs)+τ0,

Metrics