Abstract

A compact fiber tip modal interferometer (FTMI) based on two-wave interference has been demonstrated. Its fabrication process is very simple, just involving fiber tapering by a fusion splicer. The effective sensing area of the FTMI has a small length of 310μm. The interference spectra of the fiber tips with different size and profile have been analyzed. The FTMI has a good mechanical strength and high-temperature stability. It can be used for high-temperature and transverse load sensing simultaneously in a harsh environment when two different attenuation peaks are chosen to be monitored.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Chi, X. M. Tao, D. X. Yang, and K. S. Chen, Opt. Lett. 26, 1949 (2001).
    [CrossRef]
  2. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
    [CrossRef]
  3. C. Chen, Y. S. Yu, R. Yang, L. Wang, J. C. Guo, Q. D. Chen, and H. B. Sun, J. Lightwave Technol. 29, 2126 (2011).
    [CrossRef]
  4. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, Opt. Lett. 35, 1443 (2010).
    [CrossRef]
  5. H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, Appl. Opt. 49, 3841 (2010).
    [CrossRef]
  6. T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, Opt. Lett. 37, 1064 (2012).
    [CrossRef]
  7. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, Opt. Lett. 36, 412 (2011).
    [CrossRef]
  8. J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, Opt. Express 19, 12418 (2011).
    [CrossRef]
  9. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).
  10. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, Opt. Lett. 36, 4482 (2011).
    [CrossRef]
  11. M. Ding, P. F. Wang, and G. Brambilla, Opt. Express 20, 5402 (2012).
    [CrossRef]
  12. H. P. Loocka and P. D. Wentzell, Sens. Actuators B 173, 157 (2012).
    [CrossRef]
  13. A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
    [CrossRef]

2012 (4)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).

H. P. Loocka and P. D. Wentzell, Sens. Actuators B 173, 157 (2012).
[CrossRef]

M. Ding, P. F. Wang, and G. Brambilla, Opt. Express 20, 5402 (2012).
[CrossRef]

T. Chen, Q. Wang, R. Chen, B. Zhang, C. Jewart, K. P. Chen, M. Maklad, and P. R. Swinehart, Opt. Lett. 37, 1064 (2012).
[CrossRef]

2011 (4)

2010 (2)

2003 (1)

2001 (1)

1994 (1)

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Brambilla, G.

Canning, J.

Chen, C.

Chen, K. P.

Chen, K. S.

Chen, Q. D.

Chen, R.

Chen, T.

Chi, H.

Chung, Y.

Claus, R. O.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Culshaw, B.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Ding, M.

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).

Fu, H. Y.

Grobnic, D.

Guan, B. O.

Guo, J. C.

Jankovic, L.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Jansen, F.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).

Jauregui, C.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).

Jewart, C.

Jewart, C. M.

Jin, L.

Jin, W.

Ju, J.

Kim, B.

Kim, H. M.

Kim, T. H.

Limpert, J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).

Loocka, H. P.

H. P. Loocka and P. D. Wentzell, Sens. Actuators B 173, 157 (2012).
[CrossRef]

Ma, J.

Maklad, M.

Michie, W. C.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Mihailov, S. J.

Otto, H. J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).

Qureshi, K. K.

Ran, Z. L.

Rao, Y. J.

Stutzki, F.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).

Sun, H. B.

Swinehart, P. R.

Tam, H. Y.

Tao, X. M.

Tunnermann, A.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tunnermann, Light Sci. Appl. 1, 1 (2012).

Vengsarkar, A. M.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, J. Lightwave Technol. 12, 170 (1994).
[CrossRef]

Wang, D.

Wang, L.

Wang, P. F.

Wang, Q.

Wang, Y. P.

Wentzell, P. D.

H. P. Loocka and P. D. Wentzell, Sens. Actuators B 173, 157 (2012).
[CrossRef]

Wu, C.

Xue, Y.

Yang, D. X.

Yang, R.

Yu, Y. S.

Zhang, B.

Zhu, T.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Fabrication and measurement setup for the FTMI. (b) Fiber-coupler-like structure formed by the tapering process with a fusion splicer. (c)–(e) Top and side views of the FTMIs fabricated with different discharge time.

Fig. 2.
Fig. 2.

Interference spectra corresponding to the FTMIs in Figs. 1(c)1(e).

Fig. 3.
Fig. 3.

Spatial frequency spectra corresponding to the FTMIs in Figs. 1(c)1(e).

Fig. 4.
Fig. 4.

Responses of (a) transverse load and (b) temperature of the peaks A and B for the FTMI in Fig. 1(d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

(ΔλAΔλB)=(kA,NkA,TkB,NkB,T)(ΔNΔT)=K(ΔNΔT),
(δ(ΔN)δ(ΔT))=±1|D|(|kB,T||kA,T||kB,N||kA,N|)(|δ(ΔλA)||δ(ΔλB)|),

Metrics