Abstract

We present an alternative scheme for determining the frequencies of cesium (Cs) atom 6S8S Doppler-free transitions. With the use of a single electro-optical crystal, we simultaneously narrow the laser linewidth, lock the laser frequency, and resolve a narrow spectrum point by point. The error budget for this scheme is presented, and we prove that the transition frequency obtained from the Cs cell at room temperature and with one-layer μ-metal shielding is already very near that for the condition of zero collision and zero magnetic field. We point out that a sophisticated linewidth measurement could be a good guidance for choosing a suitable Cs cell for better frequency accuracy.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust sub-millihertz-level offset locking for transferring optical frequency accuracy and for atomic two-photon spectroscopy

Wang-Yau Cheng, Ting-Ju Chen, Chia-Wei Lin, Bo-Wei Chen, Ya-Po Yang, and Hung Yi Hsu
Opt. Express 25(3) 2752-2762 (2017)

Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique

Gianmaria Milani, Benjamin Rauf, Piero Barbieri, Filippo Bregolin, Marco Pizzocaro, Pierre Thoumany, Filippo Levi, and Davide Calonico
Opt. Lett. 42(10) 1970-1973 (2017)

Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10−11

Sho Okubo, Hirotaka Nakayama, Kana Iwakuni, Hajime Inaba, and Hiroyuki Sasada
Opt. Express 19(24) 23878-23888 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hansch, Opt. Lett. 32, 701 (2007).
    [Crossref]
  2. A. Derevianko and S. G. Porsev, Eur. Phys. J. A 32, 517 (2007).
    [Crossref]
  3. T. H. Dinh, A. Dunning, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 79, 054102 (2009).
    [Crossref]
  4. Y.-H. Chen, T.-W. Liu, C.-M. Wu, C.-C. Lee, C.-K. Lee, and W.-Y. Cheng, Opt. Lett. 36, 76 (2011).
    [Crossref]
  5. C.-Y. Cheng, C.-M. Wu, G.-B. Liao, and W.-Y. Cheng, Opt. Lett. 32, 563 (2007).
    [Crossref]
  6. M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
    [Crossref]
  7. G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
    [Crossref]
  8. Those have been experimentally confirmed.
  9. UTC, Coordinated Universal Time; TL, Telecommunication Laboratories of Taiwan.
  10. F. Biraben, M. Bassini, and B. Cagnac, J. Phys. 40, 445 (1979).
    [Crossref]
  11. G. Grynberg, B. Cagnac, and F. Biraben, in Coherent Nonlinear Optics, M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 111–164.
  12. B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigue, J. Chem. Phys. 97, 26 (1992).
    [Crossref]
  13. The authors of Ref. [1] used only one cell; S. Bergeson, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany (personal communication, 2013).

2011 (1)

2009 (1)

T. H. Dinh, A. Dunning, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 79, 054102 (2009).
[Crossref]

2007 (3)

1999 (2)

M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
[Crossref]

G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[Crossref]

1992 (1)

B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigue, J. Chem. Phys. 97, 26 (1992).
[Crossref]

1979 (1)

F. Biraben, M. Bassini, and B. Cagnac, J. Phys. 40, 445 (1979).
[Crossref]

Bassini, M.

F. Biraben, M. Bassini, and B. Cagnac, J. Phys. 40, 445 (1979).
[Crossref]

Bergeson, S.

The authors of Ref. [1] used only one cell; S. Bergeson, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany (personal communication, 2013).

Bergeson, S. D.

Billy, N.

B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigue, J. Chem. Phys. 97, 26 (1992).
[Crossref]

Biraben, F.

G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[Crossref]

F. Biraben, M. Bassini, and B. Cagnac, J. Phys. 40, 445 (1979).
[Crossref]

G. Grynberg, B. Cagnac, and F. Biraben, in Coherent Nonlinear Optics, M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 111–164.

Cagnac, B.

F. Biraben, M. Bassini, and B. Cagnac, J. Phys. 40, 445 (1979).
[Crossref]

G. Grynberg, B. Cagnac, and F. Biraben, in Coherent Nonlinear Optics, M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 111–164.

Chen, Y.-H.

Cheng, C.-Y.

Cheng, W.-Y.

Clarke, R. B. M.

M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
[Crossref]

Derevianko, A.

A. Derevianko and S. G. Porsev, Eur. Phys. J. A 32, 517 (2007).
[Crossref]

Dinh, T. H.

T. H. Dinh, A. Dunning, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 79, 054102 (2009).
[Crossref]

Dunning, A.

T. H. Dinh, A. Dunning, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 79, 054102 (2009).
[Crossref]

Dzuba, V. A.

T. H. Dinh, A. Dunning, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 79, 054102 (2009).
[Crossref]

Fendel, P.

Flambaum, V. V.

T. H. Dinh, A. Dunning, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 79, 054102 (2009).
[Crossref]

Gateva-Kostova, S. V.

M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
[Crossref]

Gill, P.

M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
[Crossref]

Girard, B.

B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigue, J. Chem. Phys. 97, 26 (1992).
[Crossref]

Grynberg, G.

G. Grynberg, B. Cagnac, and F. Biraben, in Coherent Nonlinear Optics, M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 111–164.

Hagel, G.

G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[Crossref]

Hansch, T. W.

Jozefowski, L.

G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[Crossref]

Lee, C.-C.

Lee, C.-K.

Liao, G.-B.

Liu, T.-W.

Nesi, C.

G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[Crossref]

Nez, F.

G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[Crossref]

Porsev, S. G.

A. Derevianko and S. G. Porsev, Eur. Phys. J. A 32, 517 (2007).
[Crossref]

Roberts, M.

M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
[Crossref]

Rowley, W. R. C.

M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
[Crossref]

Schwob, C.

G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[Crossref]

Sitz, G. O.

B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigue, J. Chem. Phys. 97, 26 (1992).
[Crossref]

Taylor, P.

M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
[Crossref]

Udem, Th.

Vigue, J.

B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigue, J. Chem. Phys. 97, 26 (1992).
[Crossref]

Wu, C.-M.

Zare, R. N.

B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigue, J. Chem. Phys. 97, 26 (1992).
[Crossref]

Eur. Phys. J. A (1)

A. Derevianko and S. G. Porsev, Eur. Phys. J. A 32, 517 (2007).
[Crossref]

J. Chem. Phys. (1)

B. Girard, G. O. Sitz, R. N. Zare, N. Billy, and J. Vigue, J. Chem. Phys. 97, 26 (1992).
[Crossref]

J. Phys. (1)

F. Biraben, M. Bassini, and B. Cagnac, J. Phys. 40, 445 (1979).
[Crossref]

Opt. Commun. (1)

G. Hagel, C. Nesi, L. Jozefowski, C. Schwob, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (2)

M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).
[Crossref]

T. H. Dinh, A. Dunning, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 79, 054102 (2009).
[Crossref]

Other (4)

Those have been experimentally confirmed.

UTC, Coordinated Universal Time; TL, Telecommunication Laboratories of Taiwan.

G. Grynberg, B. Cagnac, and F. Biraben, in Coherent Nonlinear Optics, M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 111–164.

The authors of Ref. [1] used only one cell; S. Bergeson, Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany (personal communication, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Simplified block diagram for simultaneously narrowing laser linewidth, stabilizing laser carrier frequency by cell #1, and resolving unperturbed two-photon spectrum by cell #2. ECDL, extended cavity diode laser; EOM, electro-optical modulator (modulation depth M=0.4rad); AOM, acousto-optical modulator; Sn, sideband induced spectrum; Cnm, crossover (see text); TA, tapered amplifier; VCO, voltage controlled oscillator; LA, lock-in amplifier; PMT, photomultiplier. Note that no dither influence was found from the center of the Pound–Drever–Hall (PDH) signal.

Fig. 2.
Fig. 2.

Typical spectrum of the cesium (Cs) 6S8S hyperfine transition and the fitting residual (all normalized to peak height), from cell 2; the EOM sideband frequency is locked to C10 line. Insets show the size of error bars relative to red dot. Black line, Lorentz-transit-time fitting [10] with 1.36 MHz total width FWHM. Cell wall temperature, 23°C; laser power in the middle of cells (waist), 120mW/mm2. Note that the fitting residual is symmetric and that the real scale is much smaller than that in the figure.

Fig. 3.
Fig. 3.

Error budget for determining the absolute frequency of Cs 6S8S hyperfine transitions (a) Two sample Allan deviations (comb laser beat against master laser); inset, resettability (Δfr, relative to mean value). Log scale on both axes. (b) Typical light shift at room temperature, relative to statistical zero-light-intensity frequency (ΔfL); “Light power” means total laser power per area in the waist (center of cell). (c) Longitudinal magnetic field (by solenoid current) versus frequency shift: β, residual magnetic field; ΔfB, frequency deviation from zero current; black solid line, ΔfB=α(β+β)2 where β is the fitted residual field. (d) Collision shift and broadening; see text.

Tables (1)

Tables Icon

Table 1. Obtained Frequencies of 133Cs 8S Hyperfine Levels

Metrics