Abstract

A demodulation algorithm based on the birefringence dispersion characteristics for a polarized low-coherence interferometer is proposed. With the birefringence dispersion parameter taken into account, the mathematical model of the polarized low-coherence interference fringes is established and used to extract phase shift information between the measured coherence envelope center and the zero-order fringe, which eliminates the interferometric 2π ambiguity of locating the zero-order fringe. A pressure measurement experiment using an optical fiber Fabry–Perot pressure sensor was carried out to verify the effectiveness of the proposed algorithm. The experiment result showed that the demodulation precision was 0.077 kPa in the range of 210 kPa, which was improved by 23 times compared to the traditional envelope detection method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pförtner and J. Schwider, Appl. Opt. 40, 6223 (2004).
    [CrossRef]
  2. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Commun. 204, 67 (2002).
    [CrossRef]
  3. S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, X. Meng, and L. Li, IEEE Photon. Technol. Lett. 24, 1390 (2012).
    [CrossRef]
  4. M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, Opt. Lett. 23, 966 (1998).
    [CrossRef]
  5. P. Sandoz, Opt. Lett. 22, 1065 (1997).
    [CrossRef]
  6. K. Hibino, B. Oreb, D. Farrant, and K. Larkin, J. Opt. Soc. Am. A 14, 918 (1997).
    [CrossRef]
  7. J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, Opt. Express 20, 18117 (2012).
    [CrossRef]
  8. P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
    [CrossRef]
  9. Y. Ghim and A. Davies, Appl. Opt. 51, 1922 (2012).
    [CrossRef]
  10. P. Pavliček and J. Soubusta, Appl. Opt. 43, 766 (2004).
  11. P. Lehmann, Opt. Lett. 35, 1768 (2010).
    [CrossRef]
  12. R. Dändliker, E. Zimmermann, and G. Frosio, Opt. Lett. 17, 679 (1992).
    [CrossRef]
  13. J. Li, J. Zhu, and H. Wu, Opt. Lett. 35, 3784 (2010).
    [CrossRef]
  14. E. Smith, A. Zvyagin, and D. Sampson, Opt. Lett. 27, 1998 (2002).
    [CrossRef]
  15. P. de Groot, X. Lega, J. Kramer, and M. Turzhitsky, Appl. Opt. 41, 4571 (2002).
    [CrossRef]
  16. A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
    [CrossRef]

2012 (3)

2010 (2)

2004 (2)

2002 (3)

1998 (1)

1997 (3)

1992 (1)

1958 (1)

A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
[CrossRef]

Dändliker, R.

Davies, A.

de Groot, P.

Devillers, R.

P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
[CrossRef]

Duncanson, A.

A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
[CrossRef]

Farrant, D.

Fercher, A.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Commun. 204, 67 (2002).
[CrossRef]

Frosio, G.

Ghim, Y.

Haruna, M.

Hashimoto, M.

Hibino, K.

Hitzenberger, C.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Commun. 204, 67 (2002).
[CrossRef]

Jiang, J.

S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, X. Meng, and L. Li, IEEE Photon. Technol. Lett. 24, 1390 (2012).
[CrossRef]

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, Opt. Express 20, 18117 (2012).
[CrossRef]

Karamata, B.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Commun. 204, 67 (2002).
[CrossRef]

Kramer, J.

Larkin, K.

Lasser, T.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Commun. 204, 67 (2002).
[CrossRef]

Lega, X.

Lehmann, P.

Li, D.

Li, J.

Li, L.

S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, X. Meng, and L. Li, IEEE Photon. Technol. Lett. 24, 1390 (2012).
[CrossRef]

Liu, K.

S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, X. Meng, and L. Li, IEEE Photon. Technol. Lett. 24, 1390 (2012).
[CrossRef]

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, Opt. Express 20, 18117 (2012).
[CrossRef]

Liu, T.

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, Opt. Express 20, 18117 (2012).
[CrossRef]

S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, X. Meng, and L. Li, IEEE Photon. Technol. Lett. 24, 1390 (2012).
[CrossRef]

Maruyama, H.

Meng, X.

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, Opt. Express 20, 18117 (2012).
[CrossRef]

S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, X. Meng, and L. Li, IEEE Photon. Technol. Lett. 24, 1390 (2012).
[CrossRef]

Mitsuyama, T.

Ohmi, M.

Oreb, B.

Pavlicek, P.

Pförtner, A.

Plata, A.

P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
[CrossRef]

Qin, Z.

Sampson, D.

Sandoz, P.

P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
[CrossRef]

P. Sandoz, Opt. Lett. 22, 1065 (1997).
[CrossRef]

Schwider, J.

Smith, E.

Soubusta, J.

Stevenson, R.

A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
[CrossRef]

Sticker, M.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Commun. 204, 67 (2002).
[CrossRef]

Tajiri, H.

Turzhitsky, M.

Wang, S.

Wu, F.

Wu, H.

Yin, J.

S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, X. Meng, and L. Li, IEEE Photon. Technol. Lett. 24, 1390 (2012).
[CrossRef]

J. Jiang, S. Wang, T. Liu, K. Liu, J. Yin, X. Meng, Y. Zhang, S. Wang, Z. Qin, F. Wu, and D. Li, Opt. Express 20, 18117 (2012).
[CrossRef]

Zawadzki, R.

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Commun. 204, 67 (2002).
[CrossRef]

Zhang, Y.

Zhu, J.

Zimmermann, E.

Zvyagin, A.

Appl. Opt. (4)

IEEE Photon. Technol. Lett. (1)

S. Wang, J. Jiang, T. Liu, K. Liu, J. Yin, X. Meng, and L. Li, IEEE Photon. Technol. Lett. 24, 1390 (2012).
[CrossRef]

J. Mod. Opt. (1)

P. Sandoz, R. Devillers, and A. Plata, J. Mod. Opt. 44, 519 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Commun. 204, 67 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Proc. Phys. Soc. London (1)

A. Duncanson and R. Stevenson, Proc. Phys. Soc. London 72, 1001 (1958).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic layout of an optical fiber FP pressure sensing system based on the polarized low-coherence interference setup: CCD, charge coupled device; LED, light-emitting diode; h, actual FP cavity length.

Fig. 2.
Fig. 2.

Simulated low-coherence interference with different cavity length showing that the location of the zero-order fringe moves relative to the envelope peak. (a) Cavity length is 12.5 μm, (b) cavity length is 1.9 μm, and (c) cavity length is 25 μm.

Fig. 3.
Fig. 3.

Interference fringe under (a) actual cavity length h and (b) measured cavity length hpeak. (c) Phase information corresponding to (a) and (b).

Fig. 4.
Fig. 4.

Computation of the relative phase at the measured envelope peak position under 138 kPa pressure. (a) Raw interferogram collected by CCD, envelope, and filtered interferogram. (b)  The cosine signal and (c) the relative phase of the interference fringe under h (solid curve) and hpeak (dashed curve) near the measured envelope peak position.

Fig. 5.
Fig. 5.

Relationship between the pressure and the detected cavity length. Top, proposed method (an offset of 300 nm is added to make the two profiles distinguishable). Bottom, envelope detection method.

Fig. 6.
Fig. 6.

Error (marks with error bars) between the set pressure and demodulated pressure for 50 consecutive interference data under each pressure by (a) the envelope detection algorithm and (b) the proposed algorithm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I(d,h)=0S(k)cos{k[n(k)d2h]}dk,
S(k)=2ln2πΔkexp{[2ln2(kk0)Δk]2},
n(k)=n(k0)+α(kk0),
I(d,h)=(1+η2)1/4exp[(zΔk)24γ(1+η2)]cos[Φ(d,h)],
Φ(d,h)=zk0αk02d+1/2arctanηηΔk2z24γ(1+η2).
hpeak=N(k0)dpeak/2,
φξ=Φ(dpeak,hpeak)Φ(dpeak,h)=2k0hξ+ηpeakΔk2hξ2γ(1+ηpeak2),
φξ=φ(dpeak,hpeak)φ(dpeak,h)2mπ,
m={1,π<φ(dpeak,hpeak)φ(dpeak,h)<2π0,πφ(dpeak,hpeak)φ(dpeak,h)π1,2π<φ(dpeak,hpeak)φ(dpeak,h)<π.
φ(dpeak,hpeak)=Φ(dpeak,hpeak)2π×floor[Φ(dpeak,hpeak)/2π].

Metrics