Abstract

This Letter presents an off-axially distributed image sensing (ODIS) system for three-dimensional (3D) imaging and visualization. The off-axially distributed sensing method provides both lateral and longitudinal perspectives for 3D scenes even though the sensor moves along a slanted, one-dimensional path. A 3D volume is generated from a set of recorded images by use of a computational algorithm based on ray backprojection. Preliminary experimental results are presented to illustrate the feasibility of the proposed system. To the best of our knowledge, this is the first report on 3D imaging and visualization using ODIS.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, Appl. Opt. 36, 1598 (1997).
    [CrossRef]
  3. B. Lee, S. Jung, and J.-H. Park, Opt. Lett. 27, 818 (2002).
    [CrossRef]
  4. A. Stern and B. Javidi, Proc. IEEE 94, 591 (2006).
    [CrossRef]
  5. D.-H. Shin, S.-H. Lee, and E.-S. Kim, Opt. Commun. 275, 330 (2007).
    [CrossRef]
  6. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
    [CrossRef]
  7. Y. Kim, K. Hong, and B. Lee, 3D Research 1, 17 (2010).
    [CrossRef]
  8. H. Yoo, Opt. Express 21, 8873 (2013).
    [CrossRef]
  9. Y. Kim, J. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, Opt. Express 12, 421 (2004).
    [CrossRef]
  10. Z. Kavehvash, K. Mehrany, and S. Bagheri, Appl. Opt. 51, 6031 (2012).
    [CrossRef]
  11. M. Cho and B. Javidi, J. Disp. Technol. 6, 544 (2010).
    [CrossRef]
  12. X. Xiao and B. Javidi, Opt. Lett. 36, 1086 (2011).
    [CrossRef]
  13. D. Shin and B. Javidi, Opt. Lett. 37, 1394 (2012).
    [CrossRef]
  14. S.-P. Hong, D. Shin, B.-G. Lee, and E.-S. Kim, Opt. Express 20, 23044 (2012).
    [CrossRef]

2013

2012

2011

2010

Y. Kim, K. Hong, and B. Lee, 3D Research 1, 17 (2010).
[CrossRef]

M. Cho and B. Javidi, J. Disp. Technol. 6, 544 (2010).
[CrossRef]

2009

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

2007

D.-H. Shin, S.-H. Lee, and E.-S. Kim, Opt. Commun. 275, 330 (2007).
[CrossRef]

2006

A. Stern and B. Javidi, Proc. IEEE 94, 591 (2006).
[CrossRef]

2004

2002

1997

1908

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

Arai, J.

Bagheri, S.

Cho, M.

M. Cho and B. Javidi, J. Disp. Technol. 6, 544 (2010).
[CrossRef]

Choi, H.

Hong, K.

Y. Kim, K. Hong, and B. Lee, 3D Research 1, 17 (2010).
[CrossRef]

Hong, S.-P.

Hoshino, H.

Javidi, B.

D. Shin and B. Javidi, Opt. Lett. 37, 1394 (2012).
[CrossRef]

X. Xiao and B. Javidi, Opt. Lett. 36, 1086 (2011).
[CrossRef]

M. Cho and B. Javidi, J. Disp. Technol. 6, 544 (2010).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

A. Stern and B. Javidi, Proc. IEEE 94, 591 (2006).
[CrossRef]

Jung, S.

Kavehvash, Z.

Kim, E.-S.

S.-P. Hong, D. Shin, B.-G. Lee, and E.-S. Kim, Opt. Express 20, 23044 (2012).
[CrossRef]

D.-H. Shin, S.-H. Lee, and E.-S. Kim, Opt. Commun. 275, 330 (2007).
[CrossRef]

Kim, Y.

Lee, B.

Lee, B.-G.

Lee, S.-H.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, Opt. Commun. 275, 330 (2007).
[CrossRef]

Lippmann, G.

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

Martinez-Corral, M.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

Mehrany, K.

Min, S.-W.

Okano, F.

Park, J.

Park, J.-H.

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

Shin, D.

Shin, D.-H.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, Opt. Commun. 275, 330 (2007).
[CrossRef]

Stern, A.

A. Stern and B. Javidi, Proc. IEEE 94, 591 (2006).
[CrossRef]

Xiao, X.

Yoo, H.

Yuyama, I.

3D Research

Y. Kim, K. Hong, and B. Lee, 3D Research 1, 17 (2010).
[CrossRef]

Appl. Opt.

C. R. Acad. Sci.

G. Lippmann, C. R. Acad. Sci. 146, 446 (1908).

J. Disp. Technol.

M. Cho and B. Javidi, J. Disp. Technol. 6, 544 (2010).
[CrossRef]

Opt. Commun.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, Opt. Commun. 275, 330 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

A. Stern and B. Javidi, Proc. IEEE 94, 591 (2006).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Off-axially distributed image sensing (ODIS). (b) Pinhole approximation of ODIS.

Fig. 2.
Fig. 2.

Computational reconstruction of ODIS using ray backprojection algorithm.

Fig. 3.
Fig. 3.

(a) Ray diagram for calculation of minimum depth resolution in ODIS method. (b) Minimum depth resolution according to the distance between objects and each elemental image.

Fig. 4.
Fig. 4.

Experimental setup for the ODIS system.

Fig. 5.
Fig. 5.

(a) First elemental image. (b) 41st elemental image. (c) Reconstructed slice image at z=300mm. (d) Reconstructed slice image at z=500mm.

Tables (1)

Tables Icon

Table 1. Comparison of Multiperspective 3D Imaging Systems

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δx=Δd×sinθ.
R(x,y,zr)=1Kk=1KEk(x(k1)ΔxMk(zr),yMk(zr)),
R(x,y,zr)=1Kk=1KEk(x(k1)ΔxMk(zr)/M1(zr),yMk(zr)/M1(zr)).
δ=min[δk(rk,zk)]=min(czk2grkczk),

Metrics