Abstract

In blue InGaN light-emitting diodes (LEDs), the intuitive approaches to suppress Auger recombination by reducing carrier density, e.g., increasing the number of quantum wells (QWs) and thickening the width of wells, suffer from nonuniform carrier distribution and more severe spatial separation of electron and hole wave functions. To resolve this issue, LED structures with thick InGaN wells and polarization-matched AlGaInN barriers are proposed theoretically. Furthermore, the number of QWs is reduced for the purpose of mitigating the additional compressive strain in AlGaInN barriers. Simulation results reveal that, in the proposed structures, the quantum-confined Stark effect in strained wells is nearly eliminated through the utilization of polarization-matched barriers, which efficiently promotes internal quantum efficiency. Furthermore, the phenomenon of efficiency droop is also markedly improved because of the uniformly distributed or dispersed carriers, and accordingly the suppressed Auger recombination.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription