Abstract

We present a dense wavelength division multiplexer based on volume Bragg gratings (VBGs) with a channel spacing of Δλ=1.5nm. Multiplexing efficiencies of ηSM=97% have been demonstrated with single-mode, frequency-stabilized diode laser radiation. By use of VBGs in an external-cavity laser we constrict the spectral bandwidth of passively cooled multimode diode laser bars with 19 broad-area emitters to δλ95%=120pm. When the multimode high-power diode laser radiation with a beam propagation factor of M245 is overlaid, the multiplexing efficiency decreases to ηMM=85%. Temperature control of the VBGs expands the high-efficiency operation range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, Opt. Lett. 33, 384 (2008).
    [CrossRef]
  2. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, IEEE J. Quantum Electron. 15, 344 (2009).
    [CrossRef]
  3. C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 645611 (2007).
    [CrossRef]
  4. S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, Proc. SPIE 8605, 86050Q (2013).
    [CrossRef]
  5. R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
    [CrossRef]
  6. P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
    [CrossRef]
  7. P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
    [CrossRef]
  8. P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
    [CrossRef]
  9. C. Holly, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Express 21, 15553 (2013).
    [CrossRef]
  10. S. Hengesbach, U. Witte, M. Traub, and D. Hoffmann, Proc. SPIE 7918, 79180A (2011).
    [CrossRef]
  11. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  12. S. Nippgen, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Lett. 37, 5205 (2012).
    [CrossRef]

2013 (2)

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, Proc. SPIE 8605, 86050Q (2013).
[CrossRef]

C. Holly, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Express 21, 15553 (2013).
[CrossRef]

2012 (3)

S. Nippgen, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Lett. 37, 5205 (2012).
[CrossRef]

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
[CrossRef]

2011 (2)

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

S. Hengesbach, U. Witte, M. Traub, and D. Hoffmann, Proc. SPIE 7918, 79180A (2011).
[CrossRef]

2010 (1)

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
[CrossRef]

2009 (1)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, IEEE J. Quantum Electron. 15, 344 (2009).
[CrossRef]

2008 (1)

2007 (1)

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 645611 (2007).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, IEEE J. Quantum Electron. 15, 344 (2009).
[CrossRef]

A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, Opt. Lett. 33, 384 (2008).
[CrossRef]

Brox, O.

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

Bugge, F.

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
[CrossRef]

Burgess, J.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

Chann, B.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

Ciapurin, I.

Crump, P.

P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
[CrossRef]

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
[CrossRef]

Erbert, G.

P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
[CrossRef]

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
[CrossRef]

Fritsche, H.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, Proc. SPIE 8605, 86050Q (2013).
[CrossRef]

Glebov, L.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, IEEE J. Quantum Electron. 15, 344 (2009).
[CrossRef]

A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, Opt. Lett. 33, 384 (2008).
[CrossRef]

Glenn, J. D.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

Gries, W.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, Proc. SPIE 8605, 86050Q (2013).
[CrossRef]

Heinemann, S.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, Proc. SPIE 8605, 86050Q (2013).
[CrossRef]

Hengesbach, S.

C. Holly, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Express 21, 15553 (2013).
[CrossRef]

P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
[CrossRef]

S. Nippgen, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Lett. 37, 5205 (2012).
[CrossRef]

S. Hengesbach, U. Witte, M. Traub, and D. Hoffmann, Proc. SPIE 7918, 79180A (2011).
[CrossRef]

Hoffmann, D.

C. Holly, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Express 21, 15553 (2013).
[CrossRef]

S. Nippgen, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Lett. 37, 5205 (2012).
[CrossRef]

S. Hengesbach, U. Witte, M. Traub, and D. Hoffmann, Proc. SPIE 7918, 79180A (2011).
[CrossRef]

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 645611 (2007).
[CrossRef]

Hoffmann, H. D.

P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
[CrossRef]

Holly, C.

Huang, R. K.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

Kaiman, M.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

Knigge, S.

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Kruschke, B.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, Proc. SPIE 8605, 86050Q (2013).
[CrossRef]

Maadorf, A.

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

Nippgen, S.

Overman, R.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

Pietrzak, A.

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
[CrossRef]

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, IEEE J. Quantum Electron. 15, 344 (2009).
[CrossRef]

Schmidt, T.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, Proc. SPIE 8605, 86050Q (2013).
[CrossRef]

Schultz, C. M.

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

Sevian, A.

Smirnov, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, IEEE J. Quantum Electron. 15, 344 (2009).
[CrossRef]

A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, Opt. Lett. 33, 384 (2008).
[CrossRef]

Tayebati, P.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

Tränkle, G.

P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
[CrossRef]

Traub, M.

C. Holly, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Express 21, 15553 (2013).
[CrossRef]

S. Nippgen, S. Hengesbach, M. Traub, and D. Hoffmann, Opt. Lett. 37, 5205 (2012).
[CrossRef]

S. Hengesbach, U. Witte, M. Traub, and D. Hoffmann, Proc. SPIE 7918, 79180A (2011).
[CrossRef]

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 645611 (2007).
[CrossRef]

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, IEEE J. Quantum Electron. 15, 344 (2009).
[CrossRef]

A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, Opt. Lett. 33, 384 (2008).
[CrossRef]

Wenzel, H.

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
[CrossRef]

Wessling, C.

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 645611 (2007).
[CrossRef]

Witte, U.

P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
[CrossRef]

S. Hengesbach, U. Witte, M. Traub, and D. Hoffmann, Proc. SPIE 7918, 79180A (2011).
[CrossRef]

Appl. Phys. Lett. (1)

P. Crump, A. Pietrzak, F. Bugge, H. Wenzel, G. Erbert, and G. Tränkle, Appl. Phys. Lett. 96, 131110 (2010).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, IEEE J. Quantum Electron. 15, 344 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Crump, S. Hengesbach, U. Witte, H. D. Hoffmann, G. Erbert, and G. Tränkle, IEEE Photon. Technol. Lett. 24, 703 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (5)

S. Hengesbach, U. Witte, M. Traub, and D. Hoffmann, Proc. SPIE 7918, 79180A (2011).
[CrossRef]

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 645611 (2007).
[CrossRef]

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, Proc. SPIE 8605, 86050Q (2013).
[CrossRef]

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, Proc. SPIE 8241, 824102 (2012).
[CrossRef]

P. Crump, C. M. Schultz, H. Wenzel, S. Knigge, O. Brox, A. Maadorf, F. Bugge, and G. Erbert, Proc. SPIE 7953, 79531G (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Spectral intensity of the external-cavity diode laser bar; injection current I=60A; resolution, 0.6 pm.

Fig. 2.
Fig. 2.

Spectral intensity of one diode laser bar, spectrally stabilized by an external cavity including a VBG. Logarithmic gray-scale plot ranging from 1×104 to 1.

Fig. 3.
Fig. 3.

Drawing of the HP-DWDM multiplexing setup: (1) input apertures; (2), (3), (5) dielectric mirrors; (4) VBGs with high diffraction efficiency; (6) exit aperture.

Fig. 4.
Fig. 4.

Calculated diffraction efficiencies of the VBGs used for spectral stabilization and the VBGs for spectral multiplexing. The Bragg angles are given for every wavelength.

Fig. 5.
Fig. 5.

Calculated logarithmic gray-scale plots: (a) diffraction efficiency of a VBG with a maximum diffraction efficiency of 99.5% as a function of the lateral and vertical divergence angle, (b) detailed view of (a), (c) angular intensity distribution of the collimated diode laser beam, and (d) diffracted angular intensity distribution, multiplication of (b) and (d).

Fig. 6.
Fig. 6.

Close-up view of one of the optomechanical assemblies including a thermoelectric element for controlling the temperature.

Fig. 7.
Fig. 7.

Logarithmic gray-scale plot of the measured spectral intensity distribution at the exit of the multiplexer.

Fig. 8.
Fig. 8.

Normalized spectral intensity and integrated intensity (dotted line), measured with a high-resolution spectrometer, resolution: 0.6 pm.

Fig. 9.
Fig. 9.

Comparison of the measured multiplexing efficiency using three temperature control strategies.

Tables (1)

Tables Icon

Table 1. Multimode Diffraction Efficiencies and Beam Propagation Factors at Injection Current I=60A

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=ηM·ηA1Ni=1NηVBG,i,ik=i+1NηT(1ηVBG,i,k).

Metrics