Abstract

We report on a novel type of optical mode conversion in fiber acousto-optics. The all-fiber narrowband complete transformation of the fundamental mode into the frequency downshifted optical vortex beam of topological charge +1 or 1 via a lowest-order flexural acoustic wave is theoretically demonstrated. Moreover, such a process is found to be polarization dependent: both the topological charge and polarization state of the produced optical vortex are governed by the circular polarization handedness of the input mode. The possible applications of the established conversion for optical vortex manipulation are discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
    [CrossRef]
  2. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. S. J. Russell, Opt. Lett. 25, 1499 (2000).
    [CrossRef]
  3. W. P. Risk, R. Youngquist, G. Kino, and H. J. Shaw, Opt. Lett. 9, 309 (1984).
    [CrossRef]
  4. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
    [CrossRef]
  5. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
    [CrossRef]
  6. T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
    [CrossRef]
  7. J. Zhao and X. Liu, Opt. Lett. 31, 1609 (2006).
    [CrossRef]
  8. P. Z. Dashti, Q. Li, C.-H. Lin, and H. P. Lee, Opt. Lett. 28, 1403 (2003).
    [CrossRef]
  9. P. Z. Dashti, Q. Li, and H. P. Lee, Opt. Lett. 29, 2426 (2004).
    [CrossRef]
  10. M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).
    [CrossRef]
  11. A. Yao and M. Padgett, Adv. Opt. Photon. 3, 161 (2011).
    [CrossRef]
  12. C. N. Alexeyev, E. V. Barshak, A. V. Volyar, and M. A. Yavorsky, J. Opt. 12, 115708 (2010).
    [CrossRef]
  13. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1985).
  14. K. F. Lee and J. E. Thomas, Phys. Rev. Lett. 88, 097902 (2002).
    [CrossRef]
  15. P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
    [CrossRef]

2011

2010

C. N. Alexeyev, E. V. Barshak, A. V. Volyar, and M. A. Yavorsky, J. Opt. 12, 115708 (2010).
[CrossRef]

2006

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

J. Zhao and X. Liu, Opt. Lett. 31, 1609 (2006).
[CrossRef]

2004

2003

2002

K. F. Lee and J. E. Thomas, Phys. Rev. Lett. 88, 097902 (2002).
[CrossRef]

2001

M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).
[CrossRef]

2000

1997

1996

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

1988

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

1986

1984

Alexeyev, C. N.

C. N. Alexeyev, E. V. Barshak, A. V. Volyar, and M. A. Yavorsky, J. Opt. 12, 115708 (2010).
[CrossRef]

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

Barshak, E. V.

C. N. Alexeyev, E. V. Barshak, A. V. Volyar, and M. A. Yavorsky, J. Opt. 12, 115708 (2010).
[CrossRef]

Birks, T. A.

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. S. J. Russell, Opt. Lett. 25, 1499 (2000).
[CrossRef]

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef]

Culverhouse, D. O.

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Dashti, P. Z.

Diez, A.

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef]

Kim, B. Y.

Kim, H. S.

Kino, G.

Kwang, I. K.

Lee, H. P.

Lee, K. F.

K. F. Lee and J. E. Thomas, Phys. Rev. Lett. 88, 097902 (2002).
[CrossRef]

Li, Q.

Lin, C.-H.

Liu, X.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1985).

Mangan, B. J.

Padgett, M.

Reeves, W. H.

Risk, W. P.

Russell, P. S. J.

A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. S. J. Russell, Opt. Lett. 25, 1499 (2000).
[CrossRef]

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Shaw, H. J.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1985).

Soskin, M. S.

M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).
[CrossRef]

Thomas, J. E.

K. F. Lee and J. E. Thomas, Phys. Rev. Lett. 88, 097902 (2002).
[CrossRef]

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).
[CrossRef]

Volyar, A. V.

C. N. Alexeyev, E. V. Barshak, A. V. Volyar, and M. A. Yavorsky, J. Opt. 12, 115708 (2010).
[CrossRef]

Yao, A.

Yavorsky, M. A.

C. N. Alexeyev, E. V. Barshak, A. V. Volyar, and M. A. Yavorsky, J. Opt. 12, 115708 (2010).
[CrossRef]

Youngquist, R.

Yun, S. H.

Zhao, J.

Adv. Opt. Photon.

J. Lightwave Technol.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

J. Opt.

C. N. Alexeyev, E. V. Barshak, A. V. Volyar, and M. A. Yavorsky, J. Opt. 12, 115708 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

K. F. Lee and J. E. Thomas, Phys. Rev. Lett. 88, 097902 (2002).
[CrossRef]

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

Prog. Opt.

M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001).
[CrossRef]

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Energy of the generated OVB |σ,σ as a function of the optical wavelength at different values of acoustic wave power. Parameters: a core radius r0=2.2μm, a cladding radius rcl=80μm, a normalized index difference Δ=0.3%, an acoustic frequency Ω=127MHz, the conversion length L0=98.5cm, P0=1mW, P1=2mW, P2=4mW.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ε(r,t)=ε0(r)+ξ(r)cosφcos(ΩtKz).
E=m=e˜m(r,φ)ei[(β+mK)z(ω+mΩ)t],
(H^0+V^AOI)|Ψ=β2|Ψ.
K¯=βHE1nβHE2m,
|Ψ1(σ)=[sinθ|σ,0+cosθ|σ,σei(ΩtKz)]ei(β1zωt),|Ψ2(σ)=[cosθ|σ,0sinθ|σ,σei(ΩtKz)]ei(β2zωt),|Ψ3(σ)=[sinθ|σ,σcosθ|σ,0ei(KzΩt)]ei(β3zωt),|Ψ4(σ)=[cosθ|σ,σ+sinθ|σ,0ei(KzΩt)]ei(β4zωt).
β1,2=βHE1n+0.5(ϵ±ϵ2+Q2),β3,4=βHE2m+0.5(ϵϵ2+Q2).
|Ψin=|σ,0eiωt.
|Ψ(z)=[c1(z)|σ,0+c2(z)|σ,σei(ΩtKz)]eiωt,
c1(z)=cos(0.5ϵ2+Q2z)+icos2θsin(0.5ϵ2+Q2z),c2(z)=isin2θsin(0.5ϵ2+Q2z).
WOVB(ϵ,z)=Q2ϵ2+Q2sin2(0.5ϵ2+Q2z).
Lm=πQ(2m+1),
|σ,0eiωt|σ,σei(ωΩ)t.
σOVB=σin,OVB=σin.
WOVB(P,λ)=Q2(P)ϵ2(λ)+Q2(P)sin2(πϵ2(λ)+Q2(P)2Q(P0)),

Metrics