Abstract

We report a polymer-stabilized liquid crystal (LC) microlens array with a large dynamic range and fast response time. The top substrate has a planar indium-tin oxide (ITO) electrode, while the bottom substrate has two patterned ITO electrodes for generating a fringing field and uniform longitudinal field. The fringing field is utilized to create the desired gradient refractive index profile in the LC/monomer layer, which is later stabilized by UV curing to form polymer networks. To tune the focal length, we apply a longitudinal field to change the lens shape. This microlens array offers several attractive features, such as large dynamic range, fast response time, and good mechanical stability.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nose, S. Masuda, S. Sato, J. Li, L.-C. Chien, and P. J. Bos, Opt. Lett. 22, 351 (1997).
    [CrossRef]
  2. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, Opt. Lett. 23, 992 (1998).
    [CrossRef]
  3. H.-S. Ji, J.-H. Kim, and S. Kumar, Opt. Lett. 28, 1147 (2003).
    [CrossRef]
  4. Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, Opt. Mater. 21, 643 (2003).
    [CrossRef]
  5. H. Ren and S.-T. Wu, Appl. Phys. Lett. 82, 22 (2003).
    [CrossRef]
  6. V. V. Presnyakov and T. V. Galstian, J. Appl. Phys. 97, 103101 (2005).
    [CrossRef]
  7. M. Kawamura, M. Ye, and S. Sato, Opt. Express 16, 10059 (2008).
    [CrossRef]
  8. Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
    [CrossRef]
  9. Y.-Y. Kao, P.C.P. Chao, and C.-W. Hsueh, Opt. Express 18, 18506 (2010).
    [CrossRef]
  10. M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
    [CrossRef]
  11. L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, Opt. Express 21, 7133 (2013).
    [CrossRef]
  12. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, Appl. Opt. 36, 4772 (1997).
    [CrossRef]
  13. J. Sun, S. Xu, H. Ren, and S.-T. Wu, Appl. Phys. Lett. 102, 161106 (2013).
    [CrossRef]
  14. L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
    [CrossRef]
  15. J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, Opt. Express 20, 864 (2012).
    [CrossRef]
  16. C.-W. Chen, Y.-P. Huang, and P.-C. Chen, J. Display Technol. 8, 559 (2012).
    [CrossRef]
  17. T. Nose and S. Sato, Liq. Cryst. 5, 1425 (1989).
    [CrossRef]
  18. J. Sun, Y. Chen, and S.-T. Wu, Opt. Express 20, 20124 (2012).
    [CrossRef]
  19. H. Kikuta, K. Iwata, and H. Shimomura, J. Opt. Soc. Am. A 9, 814 (1992).
    [CrossRef]
  20. J. P. Lesso, A. J. Duncan, W. Sibbett, and M. J. Padgett, Appl. Opt. 39, 592 (2000).
    [CrossRef]

2013

2012

2011

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
[CrossRef]

2010

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Y.-Y. Kao, P.C.P. Chao, and C.-W. Hsueh, Opt. Express 18, 18506 (2010).
[CrossRef]

2009

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

2008

2005

V. V. Presnyakov and T. V. Galstian, J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

2003

H.-S. Ji, J.-H. Kim, and S. Kumar, Opt. Lett. 28, 1147 (2003).
[CrossRef]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, Opt. Mater. 21, 643 (2003).
[CrossRef]

H. Ren and S.-T. Wu, Appl. Phys. Lett. 82, 22 (2003).
[CrossRef]

2000

1998

1997

1992

1989

T. Nose and S. Sato, Liq. Cryst. 5, 1425 (1989).
[CrossRef]

Bhowmik, A.

Bos, P. J.

Cao, Z.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

Chao, P.C.P.

Chen, C.-W.

Chen, H.-S.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Chen, P.-C.

Chen, Y.

Chien, L.-C.

Chigrinov, V.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
[CrossRef]

Choi, Y.

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, Opt. Express 20, 864 (2012).
[CrossRef]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, Opt. Mater. 21, 643 (2003).
[CrossRef]

Duncan, A. J.

Duston, D.

Fan, F.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
[CrossRef]

Galstian, T. V.

V. V. Presnyakov and T. V. Galstian, J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

Guralnik, I. R.

Hsu, H.-K.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Hsueh, C.-W.

Hu, L.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

Huang, Y.-P.

Ito, H.

Iwata, K.

Ji, H.-S.

Kao, Y.-Y.

Kawamura, M.

Kikuta, H.

Kim, J.-H.

H.-S. Ji, J.-H. Kim, and S. Kumar, Opt. Lett. 28, 1147 (2003).
[CrossRef]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, Opt. Mater. 21, 643 (2003).
[CrossRef]

Kim, S.-U.

Kumar, S.

Kwok, H.-S.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
[CrossRef]

Lee, C.-Y.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
[CrossRef]

Lee, S.-D.

J.-H. Na, S. C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, Opt. Express 20, 864 (2012).
[CrossRef]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, Opt. Mater. 21, 643 (2003).
[CrossRef]

Lesso, J. P.

Li, D.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

Li, J.

Li, W.-Y.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Lin, H.-C.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Lin, Y.-H.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Liu, Y.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

Loktev, M. Y.

Lu, L.

Lu, X.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

Masuda, S.

Mu, Q.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

Murauski, A.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
[CrossRef]

Na, J.-H.

Naumov, A. F.

Nose, T.

Padgett, M. J.

Park, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, Opt. Mater. 21, 643 (2003).
[CrossRef]

Park, S. C.

Peng, Z.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

Ren, H.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

H. Ren and S.-T. Wu, Appl. Phys. Lett. 82, 22 (2003).
[CrossRef]

Sato, S.

Sergan, V.

Shimomura, H.

Sibbett, W.

Sun, J.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

J. Sun, Y. Chen, and S.-T. Wu, Opt. Express 20, 20124 (2012).
[CrossRef]

Takahashi, S.

Tseng, M.-C.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
[CrossRef]

Tsou, Y.-S.

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Van Heugten, T.

Vdovin, G.

Wu, S.-T.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

J. Sun, Y. Chen, and S.-T. Wu, Opt. Express 20, 20124 (2012).
[CrossRef]

H. Ren and S.-T. Wu, Appl. Phys. Lett. 82, 22 (2003).
[CrossRef]

Xu, S.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

Xuan, L.

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

Ye, M.

Appl. Opt.

Appl. Phys. Lett.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

H. Ren and S.-T. Wu, Appl. Phys. Lett. 82, 22 (2003).
[CrossRef]

Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, and W.-Y. Li, Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

J. Appl. Phys.

V. V. Presnyakov and T. V. Galstian, J. Appl. Phys. 97, 103101 (2005).
[CrossRef]

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, J. Appl. Phys. 109, 083109 (2011).
[CrossRef]

J. Display Technol.

J. Opt. A

L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, J. Opt. A 11, 015511 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Liq. Cryst.

T. Nose and S. Sato, Liq. Cryst. 5, 1425 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, Opt. Mater. 21, 643 (2003).
[CrossRef]

Supplementary Material (2)

» Media 1: MPG (2208 KB)     
» Media 2: MPG (2208 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Device structure and fabrication procedures of the proposed microlens array. (a) Device structure, (b) homogeneous alignment, (c) central-symmetrical gradient refractive index distribution introduced by the inhomogeneous fringing field and UV exposure, and (d) the formed PSLC microlens after removing the voltage.

Fig. 2.
Fig. 2.

Interference patterns of the cell at different voltages: (a) V=0, (b) V=4Vrms, (c) V=6Vrms, and (d) V=7Vrms.

Fig. 3.
Fig. 3.

(a) Observed interference pattern at V=0, (b) dark state when the rubbing direction of the cell is parallel to the optical axis of polarizer at V=0, (c) PSLC microlens array actuation, and (d) dynamic tuning of PSLC microlens array (Media 2).

Fig. 4.
Fig. 4.

(a) 2D focus spot array and (b) image of inverted “A” array.

Fig. 5.
Fig. 5.

Focal length versus external voltage applied to the cell.

Fig. 6.
Fig. 6.

Light intensity versus time. The amplitude of the voltage applied to the cell is a 100 V square pulse.

Tables (1)

Tables Icon

Table 1. Measured Response Time under Various Square Voltage Pulses

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f=r22Nλ,

Metrics