Abstract

The manipulation of the operating conditions of photoconductive antennas by means of an additional continuous wave (CW) is reported. It is used to control a fiber-based terahertz (THz) time-domain-spectroscopy system at telecom wavelengths. The injection of an optical CW into the transmitter allows the control of the THz amplitude without causing major degradation to the system performance. This, for instance, can be exploited to perform modulation of the THz signal.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002).
    [CrossRef]
  2. M. Tonouchi, Nat. Photonics 1, 97 (2007).
    [CrossRef]
  3. P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 5, 124 (2011).
    [CrossRef]
  4. P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
    [CrossRef]
  5. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56506 (1990).
    [CrossRef]
  6. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, Opt. Express 16, 9565 (2008).
    [CrossRef]
  7. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, Opt. Express 17, 15001 (2009).
    [CrossRef]
  8. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2010), pp. 62–64.
  9. C. Ryu and S. G. Kong, Electr. Lett. 46, 359 (2010).
    [CrossRef]
  10. J. Kyoung, M. Seo, H. Park, S. Koo, H.-S. Kim, Y. Park, B.-J. Kim, K. Ahn, N. Park, H.-T. Kim, and D.-S. Kim, Opt. Express 18, 16452 (2010).
    [CrossRef]
  11. F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, and S.-H. Chang, Opt. Lett. 38, 1582 (2013).
    [CrossRef]

2013 (1)

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 5, 124 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (1)

2007 (1)

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

2002 (1)

P. H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002).
[CrossRef]

1990 (1)

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56506 (1990).
[CrossRef]

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Ahn, K.

Auston, D. H.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56506 (1990).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Bach, H.-G.

Böttcher, J.

Chang, S.-H.

Chen, S.

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 5, 124 (2011).
[CrossRef]

Fan, F.

Gu, W.-H.

Hu, B. B.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56506 (1990).
[CrossRef]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 5, 124 (2011).
[CrossRef]

Kim, B.-J.

Kim, D.-S.

Kim, H.-S.

Kim, H.-T.

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 5, 124 (2011).
[CrossRef]

Kong, S. G.

C. Ryu and S. G. Kong, Electr. Lett. 46, 359 (2010).
[CrossRef]

Koo, S.

Kunkel, R.

Künzel, H.

Kyoung, J.

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2010), pp. 62–64.

Nuss, M. C.

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Park, H.

Park, N.

Park, Y.

Roehle, H.

Ryu, C.

C. Ryu and S. G. Kong, Electr. Lett. 46, 359 (2010).
[CrossRef]

Sartorius, B.

Schell, M.

Schlak, M.

Schmidt, D.

Seo, M.

Siegel, P. H.

P. H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002).
[CrossRef]

Smith, P. R.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56506 (1990).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Stanze, D.

Tonouchi, M.

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

Venghaus, H.

Wang, X.-H.

Zhang, X.-C.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56506 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, Appl. Phys. Lett. 56506 (1990).
[CrossRef]

Electr. Lett. (1)

C. Ryu and S. G. Kong, Electr. Lett. 46, 359 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002).
[CrossRef]

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 5, 124 (2011).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (1)

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2010), pp. 62–64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of optically controlling the THz radiation.

Fig. 2.
Fig. 2.

Architecture of a THz-TDS setup with optical control by a CW carrier. For reference measurements with antenna bias modulation, the generator signal is applied to the transmitter PCA, and the CW source is switched off.

Fig. 3.
Fig. 3.

Effect of a CW optical signal on the THz amplitude.

Fig. 4.
Fig. 4.

Resistance of the receiver photoconductive switch versus incident CW power with and without applying the pulsed source, Inset: Resistance difference between both cases.

Fig. 5.
Fig. 5.

Amplitude of the THz signal as a function of the bias voltage for different values of the CW optical power. Inset: Dependence of the THz signal on the bias voltage of the antenna.

Fig. 6.
Fig. 6.

Comparison between Fourier spectra captured with antenna bias modulation (black solid line) and optical modulation (red dotted line) for equal THz amplitudes at (a) 6 mW, (b) 11 mW, and (c) 16 mW CW optical power. The SNR increases from 20 to 35 dB.

Metrics